**The title, authors, and abstract for this completion report are provided below.  For a copy of the completion report, please contact the GLFC via e-mail or via telephone at 734-662-3209**






Final Report of the Research Coordination Meeting on Thiamine Deficiency


November 6-7, 2008

Ann Arbor, MI



Dr. Dale C. Honeyfield, U. S. Geological Survey, Northern Appalachian Research Laboratory, Wellsboro, PA, USA

Dr. Donald E. Tillitt, U. S. Geological Survey, Columbia Environmental Research Center, Columbia, MO, USA

Dr. Stephen C. Riley, U. S. Geological Survey, Great Lakes Science Center, Ann Arbor, MI, USA



Fry mortality which was first observed in the late 1960s in Great Lakes salmonines and in Baltic Sea salmon in 1974 has now been linked to thiamine deficiency (historically referred to as Early Mortality Syndrome, or EMS and M74, respectively). Over the past 14 years significant strides have been made in our understanding of this perplexing problem. It is now known that thiamine deficiency causes embryonic mortality in these salmonids. Both overt mortality and secondary effects of thiamine deficiency are observed in juvenile and adult animals. Collectively the morbidity and mortality (fry and adult mortality, secondary metabolic and behavior affects in juveniles and adult fish) are referred to as Thiamine Deficiency Complex (TDC). A workshop was held in Ann Arbor, MI on 6-7 November 2008 that brought together 38 federal, state, provincial, tribal and university scientists to share information, present data and discuss the latest observations on thiamine status of aquatic animals with thiamine deficiency and the causative agent, thiaminase. Twenty presentations (13 oral and 7 posters) detailed current knowledge. In Lake Huron, low alewife Alosa pseudoharengus abundance has persisted and egg thiamine concentrations in salmonines continue to increase, along with evidence of natural reproduction in lake trout Salvelinus namaycush. Lake Michigan Chinook salmon Oncorhynchus tshawytscha appear to have a lower thiamine requirement than other salmonids in the lake. Lake Ontario American eel Anguilla rostrata foraging on alewife have approximately one third the muscle thiamine compared to eels not feeding on alewife, suggesting that eels may be suffering from thiamine deficiency. Secondary effects of low thiamine exist in Great Lakes salmonines and should not be ignored. Thiaminase activity in dreissenid mussels is extremely high but a connection to TDC has not been made. Thiaminase in net plankton was found more consistently in lakes Michigan and Ontario than other lakes evaluated. The biological role of thiaminase I, associated with thiamine deficiency, remains to be determined whereas thiaminase II has been reported to be part of a salvage pathway leading to thiamine synthesis. The use of gene array technology and 3-dimensional histology is adding new understanding to the affects of thiamine deficiency. Research is needed to determine the thiamine status of species feeding on dreissenids, the environmental sources of thiaminase and the biological role of thiaminase I.


- Download Full Report -