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ABSTRACT 

To improve understanding of how recent changes in lower trophic levels in Lake Michigan 

could be affecting prey-fish biomass and production, the Lake Michigan Committee (LMC) 

convened a Lower Trophic Level Task Group and provided several charges that are 

responded to in this report. First, we compiled a comprehensive summary of lower trophic-

level data in Lake Michigan, separating out nearshore versus offshore trends over time. 

Declining trends were prevalent in offshore time series for phosphorus, chlorophyll a, 

biomass of total crustacean zooplankton, biomass of herbivorous cladocerans, and density of 

Diporeia spp. In the nearshore, declining trends were evident only for biomass of cyclopoid 

copepods and density of Diporeia spp. Second, we hypothesized specific mechanisms by 

which changes in lower trophic levels could affect prey-fish biomass and production and 

described the degree of empirical support for each mechanism. The best-supported hypothesis 

was that declining invertebrate prey (especially Diporeia spp.) was responsible for declining 

growth of prey fish, especially over the last decade when competition for prey resources 

should otherwise have been lessened due to declining prey-fish densities. As a result, 

declining growth potentially limits the prey-fish biomass that could have been attained had 

growth been maintained at the levels that were achieved in the 1980s and earlier. Third, we 

prioritized several lower trophic-level indicators that fishery managers could use to better 

inform decision making. The top-ranked indicator was annual reporting of Alewife (Alosa 
pseudoharengus) condition. Fourth, we prioritized the key monitoring and research gaps that 

limit our current understanding of how lower trophic levels influence fish production. The 

highest-priority monitoring gap was coordinated sampling of the nearshore, which, if 

accomplished, would complement annual reporting on offshore sampling. The top-ranked 

knowledge gap was identifying bottlenecks that regulate fish recruitment, given that recent 

changes in zooplankton distribution and abundance could be suppressing survival of larval 

fish and, ultimately, the biomass and production of prey fish. We provided three specific 

recommendations for the LMC to consider as they seek to better incorporate lower trophic-

level changes into their management decision process: (1) implement a coordinated and 

standardized nearshore monitoring program, (2) encourage funding agencies to use our 

prioritized lists in their decision processes, and (3) foster the already improved dialogue 

between those researching lower trophic levels and those researching fisheries. 
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INTRODUCTION 

Several of the Laurentian Great Lakes have undergone declines in offshore nutrients and primary production 

over the past several decades owing to reduced total phosphorus (TP) inputs resulting from implementation of 

the binational Great Lakes Water Quality Agreement (signed in 1972; amended in 1983, 1987, and 2012) and 

the shunting of phosphorus to benthic habitats resulting from the proliferation of non-indigenous dreissenids 

(Dreissena bugensis, D. polymorpha) (Evans et al. 2011; Bunnell et al. 2014). Fishery managers are well 

informed of the declining trends in prey-fish biomass that began in the 1990s; two lakewide surveys (e.g., 

bottom trawl and acoustics with midwater trawl) indicate biomass of prey fish in 2010-2017 was at least 88% 

lower than the average biomass in the 1990s (DBB, CPM, DMW, unpublished data).  

Theory predicts that prey-fish biomass is regulated by both predatory demand as well as resource limitation 

(Carpenter et al. 1985; Downing and Plante 1993). Predator demand in Lake Michigan is well described by 

models that were developed in close consultation with fishery managers (e.g., Tsehaye et al. 2014), but 

managers are less certain about the effects of declining nutrients and primary production on prey-fish biomass 

and production. The Lake Michigan Committee (LMC), comprising senior state and tribal fishery managers 

and operating under the aegis of the Great Lakes Fishery Commission, created a Lower Trophic Level Task 

Group in 2016 to provide the LMC with a better understanding of the extent that declines in lower trophic-

level production are limiting the capacity of the lake to support prey fish. The LMC seeks to coordinate inter-

jurisdictional fisheries management by pursuing fish community objectives (FCOs) developed in 1995 

(Eshenroder et al. 1995). One of the objectives for planktivores (referring to prey fish, such as Alewife (Alosa 
pseudoharengus), Bloater (Coregonus hoyi), and Rainbow Smelt (Osmerus mordax) states that their biomass 

should be maintained at a level that matches both primary production and predator demands.  

In this report, we define the lower food web as biotic components (bacteria, phytoplankton, protists, 

zooplankton, and benthic invertebrates) that are consumed either directly or indirectly by fish and abiotic 

factors (nutrients such as phosphorus and water clarity) that can influence trophic interactions. Dreissenids 

have been hypothesized and demonstrated to exert large-scale changes to some components of the lower food 

web, including to phytoplankton and Diporeia spp. (Nalepa et al. 2009; Vanderploeg et al. 2002, 2010), but 

their effects on fish are less well understood (see Madenjian et al. 2015). Fishery scientists and managers 

typically consider how mesozooplankton (200-2,000 µm), such as Limnocalanus macrurus, cyclopoid 

copepods, diaptomid copepods, Daphnia galeata mendotae, or Bythotrephes longimanus, individually 

influence fish because they are primary prey for juvenile and adult planktivorous prey fish. However, 

mesozooplankton are not supported simply by “phytoplankton” but from a complex array of heterotrophic 

plankton and phototrophic plankton that vary in size from 0.2-2.0 µm (picoplankton), 2-20 µm (nanoplankton), 

and 20-200 µm (microplankton) (Fig. 1). We also note that larval fish feed on microzooplankton such as 

rotifers, dreissenid veligers (hereafter, veligers), and copepod nauplii. The key concept is that dreissenids are 

relatively unique because they can filter not only microplankton (like diatoms) but also the smaller nano- and 

picoplankton. Hence, dreissenids are competing with daphnids and calanoids for prey resources. Prior to the 

dreissenid invasions, these micro-, nano-, and picoplankton would have been linked more directly to 

planktivorous fish through their consumption of daphnids and copepods. Because age-1+ fish, such as Alewife, 

Bloater, and Rainbow Smelt, do not consume settled dreissenids, energy transfer to fish is likely not as 

efficient now as in earlier decades. A more-detailed explanation of linkages and their significance to the 

trophic pathways leading to fish is given in Appendix B. 
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The LMC charged the task group in a letter of December 11, 2015, to: (1) summarize current status and trends 

in primary production, zooplankton biomass, and benthic invertebrate biomass; (2) describe empirical or 

modeled linkages between primary and secondary production and prey-fish biomass; (3) identify data and 

knowledge gaps; (4) recommend research priorities; (5) identify new indicators of the status of lower trophic 

levels; and (6) recommend additional resources needed to provide continuing updates of prey-fish biomass and 

the prospects for meeting the LMC’s objectives for prey fish. Because the conclusions from the most-recent 

state of Lake Michigan report (Robillard et al. 2012) indicated a commitment of the LMC to reexamine their 

FCOs given the changing conditions in the lake, this report should provide a foundation for future efforts 

aimed at revising the objective for planktivores.  

 

Fig. 1. Schematic trophic interactions of mesozooplankton (200-2,000 µm) and dreissenids with different size 

categories of phototrophic (right-hand side, in green) and heterotrophic (left-hand side, in brown) components of 

microbial and classic food webs modified from Fenchel (1988) for marine food webs: picoplankton (<2 µm), 

nanoplankton (2-20 µm), and microplankton (20-200 µm). Arrows show simplified relations while interactions from 

dissolved-organic-matter recycling are not shown. Mesozooplankton illustrations (from left to right) include 

Limnocalanus macrurus (Li); a representative cyclopoid copepod, Diacyclops thomasi (Cy, mostly carnivorous); a 

representative calanoid copepod (represented by diaptomids (Di), omnivorous); and an herbivorous daphnid (Da, 

filter feeder). D. thomasi and diaptomids are primary prey of Limnocalanus (Li), and daphnids are a major prey of 

Bythotrephes longimanus (By). Arrows on the far right side leading up to daphnids, diaptomids, and dreissenid 

mussels indicate their ability to access not only phototrophic components but also heterotrophic components (not 

shown) within a size range. Daphnids are efficient at capturing (filtering) many components of pico- and 

nanoplankton; diaptomids are efficient at capturing many components of the nano- and microplankton, particularly 

motile (often heterotrophic) prey; and D. thomasi is an obligate predator of motile prey, particularly 

microzooplankton. Dreissenids are able to access many components of the pico-, nano-, and microplankton but, at 

the same time, can be selective in their feeding in all size rages. Microplankton illustrations (from left to right) are a 

ciliate, a rotifer, and an assortment of large diatom colonies and cells. Nanoplankton illustrations (left to right) are 

heterotrophic flagellates, a detrital particle with bacteria, an assortment of phototrophic flagellates, and a small 

diatom. The picoplankton illustrations (left to right) are various bacteria and archaea (brown) and the smallest 

phytoplankton (green).  
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- Illustrations by Kim Kraeer, Tracey Saxby, Jane Thomas, and Lucy Van Essen-

Fishman; Integration and Application Network; University of Maryland Center for 

Environmental Science (http://ian.umces.edu/symbols/). 
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TRENDS IN LOWER TROPHIC LEVELS 

This compilation of lower trophic-level data is not the first to document significant changes that have occurred 

in Lake Michigan (see Bunnell et al. 2014; Madenjian et al. 2015). A unique aspect of this synthesis is that it 

examines trends in nearshore (<30 m) and offshore (>30 m) habitats whereas these environments are typically 

combined in lakewide accounts such as this. Our delineation of the nearshore follows the convention of Edsall 

and Charlton (1997) where the 30-m depth contour approximates where the thermocline intersects the lake bed 

in late summer-early fall. Time series were compiled across all available relevant data from monitoring 

agencies and from universities that conduct research on Lake Michigan. For each time series, we conducted a 

Spearman rank correlation to determine if a trend was evident (α = 0.05).  

Nutrients 

Annual TP inputs (loadings) from tributaries were compiled by Dave Dolan and colleagues between 1978 and 

2008 (Dolan and Chapra 2012). Loadings in 1978-1979 averaged 6,953 metric tonnes but then, over the next 

29 years, dropped to levels always lower than 5,000 metric tonnes (Appendix A, Fig. A1). Between 1980 and 

2008, annual loadings averaged 3,653 metric tonnes but were variable and without trend (r = -0.27, P = 0.16). 

Offshore TP concentrations in spring, monitored by the Environmental Protection Agency (EPA) Great Lakes 

National Program Office at 16 stations since 1983, have decreased by more than 50% between 1996 (5.84 

µg/L) and 2015 (2.81 µg/L; Fig. 2). Chapra and Dolan (2012) and R.P. Barbiero (unpublished data) have 

developed models to estimate offshore TP concentrations that should have been realized based on TP loadings, 

retention time, and settling coefficients (i.e., ignoring within-lake TP cycling processes). The results predicted 

that TP concentrations would undergo steep declines between 1978 and the 1990s but would be relatively 

unchanged between 1998 and 2011 (Appendix A, Fig. A1). These models suggest that within-lake TP cycling, 

perhaps caused by sequestration of TP by dreissenids, can explain the continued decline in offshore TP 

concentrations since the 1990s.  

Fig. 2. Time series of offshore (open 

circles, left axis) and nearshore (black 

symbols, right axis) spring total 

phosphorus (TP) concentrations. 
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At nearshore (i.e., <30-m bottom depth) sites, however, spring TP concentrations were generally higher than in 

the offshore and have not declined since 1999 near Muskegon, Michigan, (SAP, unpublished data; Fig. 2) or 

2006 near Milwaukee, Wisconsin (HAB, unpublished data; Fig. 2). Nearshore TP concentrations revealed 

considerable temporal variation. These nearshore time series are relatively recent and localized and should be 

considered provisional. Spring nearshore TP collected in 1996, 2014, and 2015 off of Grand Haven, which can 

be affected by high loadings from the Grand River, had values of 85, 16, and 12 µg/L, respectively (SAP, 

unpublished data). 

Water Clarity 

Mean Secchi-disk depth measured during spring and summer offshore EPA surveys underwent a remarkable 

step-wise increase in 2004: Secchi depths averaged 8.6 m in 1983-2003 and 13.9 m in 2004-2015, a 5.3-m 

increase (Fig. 3). No time series of clarity were available for the nearshore, but Auer et al. (2010) reported a 

decline in nearshore light extinction coefficients from 1975-1990 to 2002-2006. Our assumption is that water 

clarity has increased more in the offshore over the past decade or so than in the nearshore. Nearshore water 

clarity is highly episodic driven by loading and resuspension of sediments (see Vanderploeg et al. 2015). 

Fig. 3. Time series of offshore Secchi-disk depth 

collected by the EPA (compiled by RPB) 

averaged for April and August each year in Lake 

Michigan. Dashed lines indicate averages for 

1983-2003 and 2004-2014. 
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Phytoplankton 

Phytoplankton abundance, as reflected by chlorophyll a concentrations (a proxy of biomass), declined in both 

the nearshore and offshore zones in Lake Michigan from the early 1970s to 1994-1995 when an intensive 

spatiotemporal sampling effort occurred (Carrick et al. 2001). An analysis of time-series data covering more-

recent years revealed divergent patterns between nearshore and offshore sites. A steep decline in satellite-

derived estimates of offshore epilimnetic chlorophyll a (April to May) was observed from the late 1990s (~1.4 

μg/L) to the 2010s (~0.70 μg/L; Fig. 4, open circles) (B.M. Lesht, University of Illinois at Chicago and RPB, 

unpublished data). Time series of in situ nearshore chlorophyll a have been compiled for waters near 

Muskegon (1999-2015, SAP, unpublished data; Fig. 4, closed circles) and Milwaukee (2006-2015, HAB, 

unpublished data; Fig. 4, closed triangles). Neither nearshore time series revealed any trend in spring 

chlorophyll a concentrations during the period when dreissenids were present.  

Fig. 4. Time series for indices of spring 

primary production in Lake Michigan. Open 

circles indicating the time series for offshore 

(Barry M. Lesht, University of Illinois-

Chicago, 2017) remotely sensed chlorophyll a 

are plotted on the left axis. Black symbols 

indicating the time series for nearshore in situ 

chlorophyll a for Muskegon (circles, NOAA, 

compiled by SAP) and Milwaukee (triangles, 

University of Wisconsin-Milwaukee, 

compiled by HAB), are plotted on the right 

axis. 

 

 

 

Phytoplankton taxonomic composition at an offshore site near Muskegon, Michigan, has undergone dramatic 

changes since 1980. Prior to 1995, the assemblage was typically composed of a mixed assemblage of 

phototrophic pico- (cyanobacteria), nano- (chrysophytes, cryptophytes), and micro- (diatoms) plankton 

(Carrick et al. 2001; Fahnenstiel et al. 2010b). The assemblage exhibited considerable shifts in composition 

around 2007 when the spring diatom bloom nearly disappeared (Fahnenstiel et al. 2010a, 2010b). An analysis 

of the Muskegon offshore phytoplankton assemblage in 2013 indicated a shift towards pico- and nanoplankton 

dominance as compared with the assemblage present in 1987 (Carrick et al. 2015). Specifically, the percent 

composition of picoplankton within total chlorophyll increased twofold from 1987 to 2013, resulting in more 

than 50% of the chlorophyll in 2013 being less than 2 µm in size. 
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Primary production in offshore waters near Muskegon has also undergone significant decadal changes since 

1983 (Fahnenstiel et al. 2010b). While production levels have been stable during mid- and late-stratification 

periods, production during the spring period has declined 78% from 1983-1987 to 2007-2008. Furthermore, in 

low-productivity systems like Lake Michigan, the highest chlorophyll a or primary production values during 

stratification are commonly within the deep chlorophyll layer (DCL) below the epilimnion (i.e., in the 

metalimnion or even hypolimnion). At two sites (45 m, 110 m) offshore of Muskegon that are sampled 

monthly, the DCL has been decreasing in size since the late 1990s (Pothoven and Fahnenstiel 2013; Pothoven 

et al. 2016), and the likely mechanisms are declining availability of phosphorus and filtration by dreissenids 

(especially at the 45-m site).  

Benthic Macroalgae 

Cladophora spp. and other benthic macroalgae appear to have benefited from higher nearshore TP (relative to 

the offshore) and increasing water clarity, both of which could be influenced by excretion of phosphorus and 

nitrogen by dreissenids (Carrick and Lowe 1988, 2007; Bootsma et al. 2015). Brooks et al. (2015) validated a 

remote sensing method to generate a time series of submerged aquatic vegetation (SAV) presumably 

dominated by Cladophora spp. near Sleeping Bear Dunes National Lakeshore, Michigan, and Milwaukee, 

Wisconsin. SAV increased at least fourfold at both sites between 1994 and 2009, a time period corresponding 

to increased abundance of zebra and quagga mussels in the nearshore zone. During the 1980s, the nearshore 

benthic algal assemblage was dominated by a diverse, native diatom assemblage (see Kingston et al. 1983).  

Microzooplankton 

The available time series for microzooplankton (e.g., protists, rotifers, veligers, copepod nauplii) are limited. 

Carrick et al. (2015) compared the abundance of smaller microzooplankton (flagellated and ciliated protists) 

between 1987 and 2013 at an offshore site near Muskegon, and they reported significant declines in the 

densities of ciliated protists, while the flagellated protist population remained stable. Time-series data for other 

microzooplankton from the EPA (includes epilimnetic estimates for nauplii, rotifers, and veligers) are being 

recompiled and were incomplete for this synthesis. This is unfortunate, given that larval fish consume copepod 

nauplii during their first weeks of life, and more-recent analyses indicate that veligers are also being consumed 

(Withers et al. 2015). The contribution of protists to the diet of larval fish in Lake Michigan is currently 

unknown, although these organisms are known to support fish production in marine systems. Nearshore 

microzooplankton data were available only from the Illinois waters of the lake, and neither rotifers nor nauplii 

exhibited any linear trend between 1998 and 2015 (Illinois Natural History Survey (INHS), unpublished data; 

Appendix A, Fig. A2). Results from observations with net tows and a Plankton Survey System during the 2015 

Cooperative Science and Monitoring Initiative field year near Muskegon showed that veligers were the 

dominant zooplankter in nearshore to mid-depth waters during June and a codominant zooplankter during July 

(HAV, unpublished data). 

Mesozooplankton 

Two complementary time series for mesozooplankton exist for the offshore: a lakewide survey (16 sites) that 

the EPA conducts each April and August (data available from 1998-2013) and a 110-m site offshore of 

Muskegon that the National Oceanic and Atmospheric Administration (NOAA) surveys between March and 

November (usually biweekly during the stratified period; data available from 1986-2015 with missing years in 

1987 and 2004-2006) depending on weather conditions. Both surveys use a 153-µm mesh net—NOAA 

samples the entire water column and EPA samples down to a 100-m depth or to 2 m above the bottom at sites 

shallower than 100 m. For each survey, we averaged biomass for broad taxa (i.e., herbivorous cladocerans, 

calanoid copepods, cyclopoid copepods, predatory cladocerans) across sampling months in each year. We also 
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summed across the groups for an average annual crustacean biomass estimate. Because the biomass estimates 

are not comparable owing to differences in how animals are measured and which length-weight regressions are 

applied, we relativized each time series based on the year of maximum biomass. In the nearshore, two surveys 

were available: the Muskegon site (15-m bottom depth) conducted by NOAA (data available 1999-2015, 

missing 2004-2006) at a monthly interval similar to the offshore survey and a biweekly survey between June 

and October conducted by the INHS at two to three sites in Illinois waters at bottom depths ranging from 3 to 

10 m (data available 1999-2013). 

Total mesozooplankton biomass in the offshore declined over both of the southern-basin time series: EPA (Fig. 

5b, 1998-2013) and NOAA (Fig. 5c, 1986-2015). For the northern basin, however, the EPA time series 

revealed no significant trend (Fig. 5a). In the nearshore, total crustacean biomass also exhibited a declining 

trend from 1999 to 2015 in the NOAA time series (Fig. 6a) on the southeastern side of the lake. However, on 

the southwestern side of the lake, the INHS time series showed no significant decline from 1999-2013 (Fig. 

6b). These trends in total zooplankton biomass can obscure more taxa-specific trends, which we describe 

below.  

 

Fig. 5. Time series of total crustacean relativized biomass at three different sites in the offshore waters of Lake 

Michigan. No trend was detected in the northern sites (panel a, P = 0.41, collected by the EPA and compiled by 

RPB). Significant linear trends were detected in southern sites (panel b, P = 0.003, EPA; panel c, P <0.001, 

collected by NOAA, compiled by SAP).  

 

 

Herbivorous cladocerans (primarily Daphnia galeata mendotae and Bosmina spp.) in the offshore declined in 

all three time series. The EPA time series revealed declines from 1998 to 2013 (northern basin, P = 0.01; 

southern basin, P = 0.01) while the NOAA time series for the southern basin revealed declines from 1986 to 

2015 (P = 0.03). In the nearshore, however, herbivorous cladocerans have not declined significantly since 

1999 in either the NOAA (P = 0.45) or INHS time series (P = 0.07). 
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Fig. 6. Time series of total crustacean relativized biomass at two sites in the nearshore waters of southern Lake 

Michigan. Significant linear trends were detected in panel a (P = 0.02, collected by NOAA, compiled by SAP). No 

trend was detected in panel b (P = 0.38, collected by Illinois Natural History Survey (INHS), compiled by SMT). 

 

 

High abundance of cyclopoid copepods has occurred in Lake Michigan during periods of high abundances of 

Alewife, which preferentially selects larger calanoid copepods over smaller cyclopoids (Wells 1970; 

Vanderploeg et al. 2012). Cyclopoid copepods are largely carnivorous (LeBlanc et al. 1997) and more 

abundant in more-productive systems that support higher concentrations of microzooplankton and of visual 

predators (Hessen et al. 1995). Despite the reductions in offshore TP, only the NOAA time series detected a 

significant decline in cyclopoids (P = 0.05) between 1986 and 2015. In the EPA time series, cyclopoids were 

estimated to be at relatively low abundance in seven out of nine years since 2005 but exhibited high biomass 

levels in 2011 and 2013, which likely accounted for a non-significant negative trend. In the nearshore, both 

time series (NOAA, P = 0.045; INHS, P = 0.02) revealed a significant decline in cyclopoids between 1999 and 

2014.  

Calanoid copepods have been and still are dominant contributors to zooplankton biomass in Lake Michigan 

and have increased relative to other crustacean groups since 2004 (Vanderploeg et al. 2012; Pothoven and 

Fahnenstiel 2015). In particular, one key calanoid species, L. macrurus, has increased in Lake Michigan 

recently (Barbiero et al. 2009; Vanderploeg et al. 2012; Pothoven and Fahnenstiel 2015). For all calanoids, 

however, neither of the offshore EPA time series exhibited increasing biomass (EPA north, P = 0.33; EPA 

south, P = 0.14) between 1998 and 2013. In fact, calanoid copepods actually declined in biomass in the 

offshore NOAA time series from 1986-2015 (P = 0.0002) even though they still dominate the biomass of the 

mesozooplankton community. In the nearshore, neither time series (NOAA, P = 0.21; INHS, P = 0.93) trended 

significantly between 1999 and either 2013 (INHS) or 2015 (NOAA). 
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Trends in densities of predatory cladocerans, which include the non-indigenous spiny water flea (B. 

longimanus) and fishhook water flea (Cercopagis pengoi) as well as the native Leptodora kindtii, were not 

significant in any of the offshore (EPA north, P = 0.48, 1998-2013; EPA south, P = 0.75, 1998-2013; NOAA, 

P = 0.31, 1986-2015) or nearshore (NOAA, P = 0.70, 1999-2015; INHS, P = 0.31, 1999-2013) surveys. 

Alewife predation likely regulates B. longimanus densities, especially in nearshore waters (Pothoven et al. 

2007; Keeler et al. 2015; Vanderploeg et al. 2015). 

Mysis diluviana 

Mysids are large (4-20 mm) omnivorous invertebrates that are important diet items for many prey fish 

(Hondorp et al. 2005; Pothoven et al. 2010). Although abundance trends of Mysis diluviana vary by survey, 

mysid densities in the past 10 years are lower than estimated between 1995 and 2000 but not markedly 

different from 1985-1989. The U.S. Geological Survey (USGS) and Michigan DNR conduct an annual 

lakewide survey (N ~ 20 sites) each August since 2005 and found declining densities through 2015 (P = 0.01, 

Fig. 7). NOAA has conducted monthly sampling of a 110-m site offshore of Muskegon between March and 

November dating back to 1985 but with gaps between 1990 and 1994 and in 2001 and 2006. Average densities 

of 111/m
2
 (SE = 27) from 1985-1989, 191/m

2 
(SE = 43) from 1995-2000, and 72/m

2
 (SE = 10) from 2007-

2015 (Fig. 7) were reported.  

 

Fig. 7. Time series of Mysis diluviana densities in Lake Michigan estimated by NOAA (black bars, compiled by 

SAP) and the USGS and Michigan DNR) (gray bars, compiled by DMW). 
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Benthic Invertebrates 

Benthic invertebrate biomass has been dominated by dreissenids since the late 1990s after previously being 

dominated by Diporeia spp. Dreissenid density on soft (i.e., sand, mud) substrates has been estimated annually 

since 1998 in the southern basin by NOAA (Fig. 8). Quagga biomass reached higher levels than zebra mussels 

ever attained, in part, because zebra mussels were limited to bottom depths less than 50 m (Fig. 8b). Quagga 

biomass in the southern basin appears to have leveled out since 2010 (black “weighted” line in Fig. 8a), 

although trajectories have varied between depth zones. Appendix B provides more-detailed descriptions and 

hypotheses regarding how dreissenids disrupted the pelagic food web. 

 

Fig. 8. Time series of quagga (panel a) and zebra (panel b) mussels for different depth regions of southern Lake 

Michigan as estimated by NOAA (compiled by AKE). 
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Diporeia spp. densities on soft substrates declined precipitously from 1994-1995 to 2000 coincident with the 

invasion of dreissenids, although the underlying mechanism is unknown (Nalepa et al. 2009). An EPA dataset, 

produced lakewide at 16 sites since 1997, indicates a steep decline in density between 1997 and 1998 even at 

deeper sites where dreissenids were absent (Fig. 9b). In a NOAA survey of 40 sites in southern waters sampled 

irregularly since 2000, Diporeia spp. are now only consistently found at one of six sites deeper than 90 m (Fig. 

9a). Both surveys, especially that of the EPA, indicate that, since 2004, densities have remained relatively 

stable at depths greater than 90 m. Although other benthic invertebrates are consumed by fish (e.g., 

chironomids, oligochaetes), time series of their densities were not available for this paper.  

Proportional density of benthic invertebrates differed between soft and hard substrates in surveys conducted in 

nearshore Illinois waters by the INHS. On soft substrates at two-three sites monitored monthly between June 

and October since 1999, chironomids dominated in all years (Appendix A, Fig. A3a), although nematodes and 

oligochaetes comprised increasing proportions in the past five or so years. The decline in Diporeia spp. 

abundance is also apparent in these data. On hard substrates for five of the past eight years, the proportional 

density of dreissenids was higher than the proportional density of chironomids, opposite to that on soft 

substrates (Appendix A, Fig. A3b). 
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Fig. 9. Time series of Diporeia spp. estimated by NOAA (panel a, compiled by AKE) and the EPA (panel b, 

compiled by RPB) for different depth regions in Lake Michigan. 
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Summary of Trends  

Lower trophic-level data trended more in offshore waters, where federal monitoring provides broad spatial 

coverage, than in nearshore waters (Table 1; Appendix A, Fig. A4). Key trends include increased water clarity, 

decreased TP, decreased chlorophyll a and phytoplankton abundance, declines in herbivorous cladocerans, 

declines in Diporeia spp., and increases in quagga mussels. Monitoring efforts in the nearshore, although 

spatially restricted, depict increases in benthic macroalgae, declines in cyclopoid copepods, and declines in 

Diporeia spp. Compared to the offshore, in the nearshore there was less evidence for declines in phosphorus, 

chlorophyll a, and zooplankton, although the shorter span of the nearshore time series makes it more difficult 

to discern trends. Quantification of the effects of lower trophic levels on fish populations will, therefore, likely 

depend on the extent to which fish species use nearshore versus offshore habitats at different life-history stages 

and on the match or mismatch of preferred prey items in different seasons. 

 

Table 1. Summary of lower trophic-level trends in Lake Michigan as determined by analyses of time series. 

Variable Offshore (30 m) Nearshore (<30 m) 

TP loading No trend (1980-2008) 

TP concentrations Declining (1983-2015)  No trend (1999-2014)  

Water clarity Increasing (1998-2015)  No data 

Chlorophyll a Declining (1998-2015)  No trend (1999-2015) 

Microzooplankton No time series available No trend (1998-2015) 

Total mesozooplankton Mixed: Declining in two time series (1986-

2015); no trend in one time series (1998-2013) 

Mixed: Declining in one time series 

(1999-2015); no trend in one time 

series (1999-2013) 

Herbivorous 

cladocerans 

Declining in all three time series (1986-2015) No trend in two time series (1999-

2015)  

Cyclopoid copepods Mixed: Declining in one time series (1986-

2015); no trend in two time series (1998-2013) 

Declining in two time series (1999-

2015) 

Calanoid copepods Mixed: Declining in one time series (1986-

2015); no trend in other two time series (1998-

2013) 

No trend in two time series (1999-

2015)  

Predatory cladocerans No trend (1994-2015)  No trend (1999-2015) 

Mysis diluviana  Declining (2005-2015), but 2005-2015 densities 

not different from 1985-1989  

Not relevant 

Dreissenids Increasing to asymptote (1998-2014)  No trend, very noisy (1998-2014) 

Diporeia spp. Declining (2000-2014)  Declining (2000-2014) 
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MECHANISMS BY WHICH CHANGES IN LOWER TROPHIC LEVELS 

COULD AFFECT FISH 

Above, we provided empirical evidence for changes in lower trophic levels in Lake Michigan noting that most 

of the changes are in offshore waters. At the same time, the less-monitored nearshore could also be undergoing 

large changes, too. Fish typically are at least one trophic level above zooplankton or benthic invertebrates. 

Accordingly, we investigate four mechanisms (see Fig. 10) by which prey fish could be affected by changes in 

lower trophic levels or in important abiotic factors (e.g., water clarity): (1) prey-fish abundance is reduced by 

increased piscivory associated with increasing water clarity; (2) fewer invertebrate prey cause declining growth 

rates of juvenile and adult fish; (3) fewer invertebrate prey cause declining condition of adult fish, which, in 

turn, reduces the quantity and quality of fish eggs and larvae; and (4) declining zooplankton prey and/or altered 

vertical distribution of zooplankton prey reduce survival of larval fish. We discuss the likelihood of each 

mechanism. Although these hypothesized mechanisms are written as if independent, we recognize that some 

may interact and that the Lake Michigan food web is much more complex than the simple illustration in Fig. 

10. As an example, mass-balance ecosystem models parameterized for Lake Michigan have revealed that no 

single factor (e.g., declines in phosphorus and phytoplankton, proliferation of dreissenids, changing 

zooplankton abundance or composition, or salmonine predation) appears to underlie declines in prey fish (see 

Kao et al. 2017; ESR, unpublished data). Rather, multiple factors, perhaps working synergistically, are driving 

the declines. 

Hypothesis 1 

We hypothesize that prey-fish abundance is reduced by increased piscivory owing to increased water clarity 

associated with oligotrophication and the eruption of quagga mussels, including mussel filtration of seston 

(Vanderploeg et al. 2010; Rowe et al. 2015; see Fig. 10, pathway 1). As Vanderploeg et al. (2015) noted, water 

clarity has increased in Lake Michigan so that visually preying planktivores (e.g., B. longimanus; fish, 

including larvae) can likely see plankton at far greater depths during the daytime than before. Likewise, 

piscivores, such as Chinook Salmon (Oncorhynchus tshawytscha), can likely detect prey fish more easily in 

clearer water.  

Given that offshore water clarity increased by more than 60% around 2004 and has henceforth remained clear 

(Fig. 3), what evidence exists that the salmonine community has increased or maintained its foraging 

efficiency on pelagic prey fish? In particular, has search efficiency (γ) actually declined? In the current 

statistical catch-at-age models for salmonines, γ is modeled as a Type II functional response where 

consumption increases with prey density but eventually reaches satiation, is assumed to be time-invariant, and 

is estimated to be higher for Lake Trout (Salvelinus namaycush) than for Chinook Salmon (Tsehaye et al. 

2014). Given that Alewife density has declined by at least 40% from 2002-2004 to 2012-2016 (USGS 2017), 

density possibly has declined to such low levels that γ has declined, too. We hypothesize, however, that 

increased water clarity has allowed γ to increase or to be maintained at higher than predicted levels, although 

no direct evidence for such a situation exists. Future models could explore if allowing γ to increase during the 

period of increased water clarity would improve model fits. Other factors already known to affect consumption 

rates of prey fish include: (1) the numbers of piscivores (e.g., arising from increased Chinook Salmon natural 

recruitment aided by immigration of wild Chinook Salmon from Lake Huron (Clark et al. 2016)), (2) diet 

composition, and (3) energy density of prey fish (see Madenjian et al. 2015).  
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In the nearshore zone, water clarity has not increased to the same degree as in the offshore. However, Walleye 

(Sander vitreus) is a nearshore predator that likely can maintain relatively high predation rates in even turbid 

waters (Ryder 1977; Lester et al. 2004). In summary, the hypothesis that prey-fish abundance has been reduced 

by increased piscivory owing to increased water clarity associated with oligotrophication has not been 

specifically evaluated but is plausible and worthy of future research. 

 

Fig. 10. Potential mechanisms by which changes in lower trophic levels can influence the production of prey fish in 

Lake Michigan: (1) increased predation by salmonines on prey fish owing to increasing water clarity, (2) reduced 

growth rates by juveniles and adults owing to declining invertebrate prey, (3) fewer and lower-quality eggs owing to 

reduced adult energetic condition, and (4) slower growth and reduced survival of larvae owing to either reduced 

densities of zooplankton prey or altered zooplankton spatial distribution.  

 

-Illustrations by Kim Kraeer, Lucy Van Essen-Fishman, Emily Nastase; Integration and Application Network (IAN); 

University of Maryland Center for Environmental Science (http://ian.umces.edu/imagelibrary/); Auer (1982). 

 

 

  

http://ian.umces.edu/imagelibrary/
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Hypothesis 2 

We hypothesize declining growth rates (i.e., wet weight-at-age) of juvenile and adult prey fish owing to fewer 

invertebrate prey resources contributed to declines in prey-fish biomass (Fig. 10, pathway 2). We recognize 

that fish abundance is the most-important driver of fish biomass but note that declines in growth rates can be 

secondary contributors to biomass declines. Hypothesis 2 requires that recent lower trophic-level changes 

resulted in fewer invertebrate prey for juvenile and adult prey fish. As Table 1 indicates, the only invertebrate 

prey that has undergone a lakewide decline is Diporeia spp. Some mesozooplankton trends have been negative 

(i.e., herbivorous cladocerans in the offshore), but declining trends for most taxa were not apparent. Secondary 

indications of a declining invertebrate prey base are shifts in prey-fish diet (Pothoven and Madenjian 2008; 

Bunnell et al. 2015) or in stable isotopes (Turschak et al. 2014) of key prey fish. Dreissenids, for sure, have 

become more abundant; only round goby (Neogobius melanostomus), a benthic prey fish that invaded Lake 

Michigan in 1993, has demonstrated an ability to exploit juvenile and adult dreissenids. In total, the evidence 

does not support lakewide declines for aggregated invertebrate prey (given the proliferation of dreissenids). 

Alternatively, for non-dreissenid invertebrate prey, our synthesis indicates that biomass is either unchanged or 

lower than what was documented in the late 1990s. Of the three prey groups mentioned above (Diporeia spp., 

zooplankton, dreissenids), the steep decline in Diporeia spp. density during the 1990s and 2000s is most 

consistent with changes in prey-fish growth.  

Given that densities of prey fish declined over the past two decades (USGS 2017), one might reasonably 

predict that growth rates would be relatively stable despite reduced prey densities, e.g., of Diporeia spp. 

However, mean weight of age-3 Alewife estimated from USGS trawl surveys exhibited a decline between 

1990 and 2001 (Fig. 11a) but has been relatively stable from 2002 through 2015. Madenjian et al. (2003) 

reported declining growth through 2001 and attributed it to declining Diporeia spp. densities. On average, the 

weight of an age-3 Alewife declined 33% between the 1980s (41 g) and the 2000s (28 g). Also, mean weight 

of age-3 Bloater has exhibited a gradual long-term decline (Fig. 11b). We interpret the decline in mean weight 

of Bloater between 1980 and 1990 to have resulted from high intraspecific competition; Bloater mean biomass 

during this period was five times higher than in the 2000s. Bloater growth appeared relatively stable from 1990 

through 2004 but has declined gradually over the past decade in the absence of any substantive increase in 

Bloater biomass. In total, the average weight of an age-3 Bloater declined 44% between the 1980s (79 g) and 

the 2000s (45 g). Hence, Alewife and Bloater, which are associated primarily with the offshore, are attaining a 

smaller weight-at-age in the 2000s than previously, coinciding with a period of changing lower trophic levels 

and declining fish densities. In conclusion, there is good evidence that prey-fish growth has declined since the 

1980s owing to declining invertebrate prey resources, especially of Diporeia spp. One caveat, however, is that 

reduced growth rates could also lead to reductions in natural mortality rates owing to stronger immune 

defenses or bone development associated with slower growth in weight (see Mangel and Stamps 2001). These 

changes could compensate, at least in part, for the potential increase in predation mortality described in 

Hypothesis 1 and for the theoretical reduction in population biomass associated with slower growth rates.  
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Fig. 11. Time series of growth 

rates (mean weight at age 3) for 

Alewife (panel a) and Bloater 

(panel b) in Lake Michigan. 

 

 

 

Overall, the hypothesis that declining growth rates owing to fewer invertebrate prey have contributed to 

declines in prey-fish biomass has equivocal support. That said, the potential for compensatory increases in 

survival (sensu Mangel and Stamps 2001) of prey fish causes uncertainty regarding the effects of reduced 

growth rates (or condition; see Hypothesis 3) on prey-fish biomass.  

Hypothesis 3 

We hypothesize that limited invertebrate prey (i.e., zooplankton, Diporeia spp., mysids) is causing reductions 

in adult prey-fish condition, such that the quantity (e.g., fecundity) and quality (e.g., larval size at hatch, size of 

yolk-sac) of offspring are compromised (also known as “maternal effects”; see Fig. 1, pathway 3). The best 

criterion in support of this hypothesis would be documentation of a reduction in energetic condition of prey 

fish. Several studies have estimated the energy density of different species over about the past 20 years when 

abundance for most prey-fish species was declining. As summarized in Madenjian et al. (2015), Alewife 

(Madenjian et al. 2003, 2006; Hondorp et al. 2005), Bloater (Pothoven et al. 2012), Deepwater Sculpin 

(Myoxocephalus thompsonii) (Hondorp et al. 2005; Pothoven et al. 2011), and Lake Whitefish (Coregonus 
clupeaformis) (Pothoven et al. 2001; Pothoven and Madenjian 2008) all have been documented to either have 

experienced reductions in mean energy density or no compensatory increase in energy density despite having 

fewer intraspecific competitors.  
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Given that changes in lower trophic levels are the most likely explanation for the reduced energetic condition, 

better support for the hypothesis would derive from research that links maternal energetic condition to quantity 

or quality of offspring. For marine fish species, this linkage has been well documented in a variety of studies 

(e.g., Kjesbu et al. 1991; Berkeley et al. 2004). For Great Lakes prey fish, however, this linkage has not been 

demonstrated consistently. In one supporting study of Bloater where Bloater fecundity was compared for 

similar-sized fish from the 2000s and late 1960s, average fecundity was 24% lower in the 2000s than in the 

1960s, which corresponded with a 40% lower energetic condition in the 2000s compared to the 1960s (Bunnell 

et al. 2009). Conversely, Muir et al. (2014) found minimal evidence that female Lake Whitefish in better 

physiological condition produce eggs of higher quality (e.g., larger size, higher lipid content, higher 

concentrations of desirable fatty acids) than those in poorer condition. The impact of maternal condition on 

percid eggs and larvae also has produced equivocal results with other factors, such as stock effects (Wang et al. 

2012) or climate (Farmer et al. 2015; Feiner et al. 2016), being more-important predictors of offspring 

characteristics than maternal characteristics. Given that the importance of maternal effects likely varies by 

species, research will be required to determine if reduced energetic condition of Alewife, for example, is 

resulting in fewer or poorer-quality eggs and offspring and thereby limiting its reproductive potential.  

Negative trends in larval fish densities would be consistent with the hypothesis that declining condition or 

growth was indeed limiting production of offspring (via maternal effects). These densities are influenced by 

many factors, including the number of adult spawners; abiotic conditions (e.g., temperature, precipitation); 

biotic factors (predation, prey availability); and, potentially, adult energetic condition. No larval time series 

exist for Lake Michigan fish; however, from two lakewide surveys, the USGS estimates densities of age-0 

Alewife in late summer, for example, that feed into a stock assessment model that predicts age-0 densities. In 

the model, Tsehaye et al. (2014) estimated age-0 Alewife densities based on not only these two surveys but 

also on modeled consumption of Alewife, and they found that age-0 Alewife densities in the fall exhibited no 

trend between 1990 through 2010, a period when adult condition declined (see Madenjian et al. 2015). Even 

when accounting for the effect of spawning-stock size, there was no downward trend in Alewife recruitment as 

measured by numbers of fall age-0 fish in the 2000s (Bunnell et al. 2017). Similarly, age-0 Bloater densities 

estimated from the same two surveys increased over the same period when fecundity and adult condition had 

declined (USGS 2017). The hypothesis that reduced adult energetic condition reduced the density of offspring 

is not supported by the available data.  

Hypothesis 4 

We hypothesize that survival of larvae from key prey fish decreased relative to previous decades (i.e., prior to 

2004) owing to fewer zooplankton prey resources or to an altered vertical distribution of zooplankton prey (see 

Fig. 10, pathway 4). For some species (e.g., Alewife, Bloater), whose age-0 numbers have not trended 

downward based on models or surveys since the early 2000s, this hypothesis is not supported. For rhetorical 

reasons, we still describe tangential evidence for this hypothesis in the low probability that survey or model 

estimates are inaccurate.  

This hypothesis would be supported if lower trophic-level changes resulted in fewer small zooplankton prey 

for first-feeding larvae or in reduced spatial overlap between fish larvae and their prey (Hjort 1914; Cushing 

1990). In evaluating this hypothesis, consider that some larvae hatch in nearshore waters (e.g., Alewife, 

Rainbow Smelt, Yellow Perch (Perca flavescens), and others hatch in offshore waters (e.g., Bloater, 

Deepwater Sculpin). Such research may be complicated by advection of larvae from nearshore to offshore 

waters within the first two weeks of life (Dettmers et al. 2005; Weber et al. 2015). 
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Have zooplankton prey densities declined throughout the lake? Our compilation of lower trophic-level trends 

showed equivocal support for a reduced availability of microzooplankton prey that could support first-feeding 

larvae. Trends for larger microzooplankton prey (rotifers, copepod nauplii) were available only for nearshore 

waters in Illinois, and those time series showed no decline between 1998 and 2015. However, abundance of 

smaller microzooplankton (ciliated protists) trended downward strongly between 1987 and 2013 in offshore 

waters (Carrick et al. 2015). Abundance of other smaller, easily captured, mesozooplankton prey (e.g., 

herbivorous cladocerans, cyclopoid copepods) did not trend downward across data sets (Table 1). For example, 

herbivorous cladocerans were declining in all three offshore time series (potentially negative effect on Bloater 

larvae) but showed no trends in two nearshore time series (potentially neutral effect on Alewife, Rainbow 

Smelt, and Yellow Perch larvae). Although no time series were available for veligers, which are of unknown 

nutritional quality, they are appearing in the diets of larval fish, such as Alewife (Withers et al. 2015). We 

presume veligers would be abundant given the high density of adult dreissenids throughout the lake. Our time 

series are too sparse and rarely occur during early stratification (June-July), making them unsuitable for 

evaluating if densities of preferred zooplankton (abundance of prey weighted by selectivity; Vanderploeg and 

Scavia 1979) are adequate for larval fish when they switch to exogenous feeding.   

Has the vertical distribution of zooplankton prey over the last 10 years changed with increasing water clarity? 

Because larval fish are visual predators, daytime overlap with their prey is critical to their survival. During 

thermal stratification, many zooplankters undergo some degree of diel vertical migration, occupying deeper 

metalimnetic or hypolimnetic waters during the day and migrating to shallower waters at night (see 

Vanderploeg et al. 2015). For example, in Lake Michigan, Daphnia galeata mendotae undergoes large vertical 

migrations (up to 30 m) from the metalimnetic-hypolimnetic boundary during the day into the epilimnion at 

night; cyclopoid and calanoid copepods exhibit somewhat shorter migrations. These vertical migrations allow 

zooplankters to escape the visually preying non-indigenous B. longimanus that inhabits mostly the epilimnion 

and metalimnion (Pangle et al. 2007; Bourdeau et al. 2015; Ptáčníková et al. 2015; Vanderploeg et al. 2015). 

With increasing water clarity, however, B. longimanus may feed successfully in deeper waters and thereby 

cause zooplankton to migrate even deeper (Vanderploeg et al. 2015). Recent changes in the DCL also may 

induce a deeper daytime vertical distribution of herbivorous zooplankters; the DCL depth and width appear to 

be undergoing changes associated with increasing water clarity and reduced nutrient concentrations (Pothoven 

and Fahnenstiel 2013). Deeper daytime distributions of zooplankton may result in decreased overlap between 

larval prey fish and their invertebrate prey as proposed by Eshenroder and Lantry (2012) for juvenile Alewife. 

Improved descriptions of the daytime vertical distribution of fish larvae and their prey will be required to 

determine if lower trophic-level changes, such as the proliferation of B. longimanus or increasing water clarity, 

have reduced the foraging efficiency of larval prey fish. These studies are particularly relevant during the setup 

of stratification in late spring and early summer, an important time for fish larvae, which has received little 

attention. 

Has the seasonal timing of zooplankton densities changed in recent decades? The temporal overlap between 

first-feeding larvae and zooplankton prey has been recognized as a critical period going back to Hjort (1914). 

In some other systems, climate warming can cause phenological shifts for phytoplankton and zooplankton 

(Adrian et al. 2009). Similarly, Vanderploeg et al. (2012) reported earlier plankton development in warm 

springs, particularly in 1998, which was extremely warm. On the contrary, Pothoven and Vanderploeg (2017) 

reported that, at NOAA’s 45-m and 110-m sites near Muskegon, spring zooplankton biomass peaked later in 

2007-2015 as compared to 1995-2002, which could be associated with a decline in spring primary production. 
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Slower growing larval Alewife and Bloater likely have a lower probability of survival, assuming size confers a 

survival advantage (see Miller et al. 1988). Unpublished data collected during the 2015 CSMI year on Lake 

Michigan at four sites in July revealed that larval Alewife growth rates were more than 40% lower than in 

2001-2006 (Hook et al. 2007; Weber et al. 2015). Likewise, Bloater growth rates in 2015 (ESR and D. 

Eppehimer, Great Lakes Science Center, personal communication, 2017) were more than 40% lower than in 

1982-1983 (Rice et al. 1987). The high frequency of empty larval stomachs noted in recent studies (e.g., 

Withers et al. 2015) provides further support for the proposition that growth rates of larval prey fish have 

slowed in a more-oligotrophic Lake Michigan. Although larval-fish survival rates in the Great Lakes are 

estimated too rarely to make comparisons across the decades where lower trophic-level conditions have varied 

starkly, studies estimating larval-fish growth rates are more numerous and afford more opportunities for 

comparison. Slower growing larvae may have a lower probability of survival assuming size confers a survival 

advantage (see Miller et al. 1988).  

In summary, evidence is emerging that Bloater and Alewife larvae are growing more slowly over the last 

decade coincident with the changing zooplankton community, but there is no supporting evidence for 

decreased survival of these larvae to the juvenile stage in the fall. Thus, we reject the hypothesis that reduced 

survival of age-0 prey fish accounts for fewer older prey fish but caution that the resilience of existing adult 

populations may have been compromised by the observed declines in larval growth.  
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EXPERT OPINION FOR LOWER TROPHIC-LEVEL INDICATORS AND 

MONITORING AND KNOWLEDGE GAPS 

Among its charges, the LMC sought an identification of predictive lower trophic-level indicators, monitoring 

gaps, and knowledge gaps. Lists of indicators were developed during a workshop in the summer of 2016, and 

these were refined further and prioritized by conference calls and emails.  

Lower Trophic-Level Indicators for Fishery Managers 

We discuss the top-four-ranked indicators below; the entire list and ranking can be found in Appendix A, 

Table A1.  

1) Condition of adult 

Alewife: 

This relatively simple measure of Alewife condition (e.g., predicted wet weight for a 

selected length) integrates the effects of changes in lower trophic levels. The Great 

Lakes Science Center has a long-term time series for this metric so no new sampling 

is required.  

2) Satellite-derived 

chlorophyll a 

estimates: 

Chlorophyll a is routinely sampled in situ at several nearshore and offshore sites 

around the lake, but satellite estimates of epilimnetic chlorophyll a provide broader 

spatiotemporal coverage. Several recent papers use this approach (e.g., Warner and 

Lesht 2015; Fahnenstiel et al. 2016), and the EPA is willing to continue to compile 

and report this information as part of its annual reporting (EH-M). One caveat is that 

a considerable fraction of primary and secondary production likely occurs in the 

DCL or metalimnion (Pothoven and Fahnenstiel 2013; Vanderploeg et al. 2015), 

which is not included in satellite surveys. 

3) Density of M. 

diluviana: 

Nearly all of the key prey fish rely on M. diluviana as a high-energy food item 

during at least part of the year. Declines in this key offshore prey would likely be 

detrimental to production of prey fish. Because several agencies (NOAA, EPA, 

USGS) monitor mysids annually, an interagency index could be developed readily. 

4) Spring TP: Phosphorus is the limiting nutrient for primary production, and, similar to the 

chlorophyll a estimate (Indicator 2 above), spring TP is a key indicator of potential 

productivity at the base of the food web. The EPA quantifies spring TP in the 

offshore waters annually. Other routine monitoring includes NOAA’s monthly 

sampling along a nearshore to offshore transect offshore of Muskegon and nearshore 

sampling by the Bootsma Lab (University of Wisconsin-Milwaukee) on the 

southwestern shore.  
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Monitoring Gaps  

We discuss the top-four-ranked monitoring gaps below; the entire list and ranking can be found in Appendix 

A, Table A2. 

1) Coordinated 

nearshore 

sampling of lower 

trophic levels, 

including fish 

larvae: 

Several agencies and at least two universities conduct localized nearshore sampling 

of lower trophic levels and fish (see Appendix A, Fig. A4), but this limited nearshore 

work is not standardized or reported in a coordinated manner. Every five years 

beginning in 2010, the EPA funds the National Coastal Condition Assessment in all 

five Great Lakes, which encompasses more than 50 nearshore sites in Lake Michigan 

sampled for nutrients, benthic invertebrates, and fish contaminants. Additional work 

would be required to standardize or relativize the data in the nearshore such that a 

more-comprehensive status of the nearshore could be described. Ideally, additional 

nearshore sampling sites could be established given the dynamic nature of the 

inshore and its importance as spawning and nursery habitat for key fish. Targeted 

sampling near river mouths may also be required given that both field observations 

(Yurista et al. 2012; Pothoven and Fahnenstiel 2015) and modeling (Rowe et al. 

2017) suggest primary productivity is centered around tributary sources of nutrients 

or areas of upwelling or both. 

2) Direct 

measurements of 

primary 

production: 

In situ estimation of carbon fixation by primary producers is not estimated as 

routinely as it was in past decades, and several members of the task group 

emphasized the importance of maintaining this measurement even as more indirect 

measures of primary production are being developed. Maintaining this capability will 

insure proper calibration of indirect estimates. 

3) Phosphorus 

loading by 

tributary: 

The last year of estimated TP loading into Lake Michigan by tributary was 2008. The 

historical time series illustrated no trend from about 1980 through 2008 yet there are 

at least two reasons to justify updating the time series. First, considerable funding 

from the Great Lakes Restoration Initiative has been invested since 2010 to further 

reduce TP loading. Have TP loadings begun a declining trend over the past decade? 

We do not know. Second, our workshop deliberations revealed limited understanding 

of how nutrient loadings influence offshore TP concentrations, suggesting a potential 

decoupling owing to a greater importance of within-lake TP cycling. To support 

future modeling, within-lake phosphorus concentrations, updated TP loadings, and 

the fate of TP once it enters the lake are important unknowns. In addition, TP 

loadings by tributary will allow scientists to better understand the spatiotemporal 

dynamics of nearshore productivity. 

4) Simultaneous 

sampling of the 

physical 

environment, 

lower trophic 

levels, and fish: 

 

The task group recognized how simultaneous sampling of abiotic factors (nutrients, 

temperature, light), lower trophic levels (chlorophyll a, benthic macroinvertebrates, 

zooplankton, M. diluviana), and fish is critical for an improved understanding of 

factors that influence the distribution and abundance of prey fish. This 

contemporaneous sampling of multiple trophic levels already is undertaken by many 

agencies regionally and over broader spatial scales during CSMI years, but the task 

group believes there are still considerable opportunities for this approach to be 

expanded. 
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Knowledge Gaps 

We assume that such knowledge gaps may be used as research priorities by funding agencies. We discuss the 

top-four-ranked knowledge gaps below; the entire list and ranking can be found in Appendix A, Table A3.  

1) What lower 

trophic-level 

changes bottleneck 

the recruitment of 

age-0 fish to the 

age-1 and older 

populations? 

Some members of the task group believe that known changes in lower trophic 

levels may be having their greatest impact on fish abundance by affecting their 

recruitment past larval stages. Although existing time series of age-0 fish do not 

indicate a bottleneck, further testing of this hypothesis in a system as large as Lake 

Michigan will require a coordinated effort across agencies and universities. 

2) What is the relative 

importance of 

reduced nutrients 

and quagga mussel 

filtration and their 

potential 

interaction in 

driving declining 

pelagic primary 

production? 

Published studies recently identified these two factors as the key drivers of 

declining pelagic primary production (e.g., Warner and Lesht 2015; Rowe et al. 

2017), but the task group recommends additional research to determine which 

factor is more important. Knowing which factor most underlies the ongoing 

oligotrophication of Lake Michigan would allow for more-targeted remediation, 

i.e., should lakewide control of dreissenids be pursued or should phosphorus targets 

be reconsidered. Recent biophysical models that simulate different nutrient inputs, 

nutrient concentrations, and mussel filtering rates indicate that both factors have 

contributed to the observed spatiotemporal changes in phytoplankton production 

and abundance (e.g., Pilcher et al. 2017; Rowe et al. 2017). 

3) Have changes in 

the zooplankton 

community 

affected prey-fish 

biomass to the 

extent that fishery 

managers should 

reconsider their 

objectives? 

Our report summarized changes in mesozooplankton: declining offshore 

herbivorous cladoceran density, increasing relative importance of calanoid 

copepods, and declining total biomass in southern Lake Michigan. But whether or 

not these changes affect prey-fish biomass and, by extension, imply a need for 

altered management policy is unresolved. This research gap relates to Knowledge 

Gap 1 above where changes in the zooplankton community have been hypothesized 

to limit survival of larval fish. A critical gap would be estimation of zooplankton 

species composition and abundance lakewide more often than for April and August 

and especially during early stratification. 

4) What are the key 

drivers of 

phosphorus 

recycling? 

Declines in offshore TP are well documented, but, as with Knowledge Gap 2, a full 

understanding of why TP levels are so low is elusive. Work by two members of the 

task group (MDR and RPB) indicates that the decline in TP cannot be explained 

entirely by a decline in TP loading (see Monitoring Gap 3 above). Their work does 

not predict the observed steep decline in TP from 1998 to 2011 (Appendix A, Fig. 

A1), which suggests that within-lake TP cycling, perhaps influenced by 

sequestration of TP by dreissenids, is playing a critically important role in offshore 

TP dynamics. The role of dreissenids on P recycling should be investigated, 

including their impact on: (1) soluble and particulate C, N, and P excretion; (2) 

retention of such nutrients in body tissues and shells; and (3) impacts of burial of C, 

N, and P in sediments (e.g., Bootsma et al. 2015; Rowe et al. 2017; Vanderploeg et 

al. 2017).  
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RECOMMENDATIONS 

We provide three recommendations for the LMC as it seeks to accommodate its management objectives to the 

reality of the poorly understood impacts of changes in lower trophic levels on prey-fish biomass.  

1) Implement a coordinated and standardized nearshore monitoring program to complement ongoing efforts 

by federal agencies in the offshore. Although offshore monitoring is not as well coordinated as it could 

be given that the EPA, the USGS, and NOAA sample multiple trophic levels in different locations, the 

LMC, nevertheless, is accustomed to annual reporting on offshore surveys by these agencies and has a 

sense of how offshore monitoring affects decision making. The nearshore, however, is much more 

dynamic and supports spawning and nursery habitats for valuable fish, such as Alewife, Yellow Perch, 

Rainbow Smelt, Lake Whitefish, and Cisco (C. artedi). Presently, a handful of state and federal agencies 

and universities sample trophic levels and fish in different regions of the nearshore. As a starting point, 

organize a workshop where agencies and universities that are currently monitoring nearshore lower 

trophic levels (NOAA, INHS, UW-Milwaukee, Central Michigan University, Little Traverse Bay Band 

of Odawa Indians) meet and establish an agreed-upon standardized protocol. This protocol should then 

be shared with other state agencies and universities that sample to better answer if the large-scale lower 

trophic-level changes that have been documented in the offshore are prominent in the nearshore. Much 

can be gained, too, from examining interagency lower trophic-level monitoring in Lakes Erie and 

Ontario. 

2) Funding agencies are encouraged to use our prioritized list of monitoring and knowledge gaps in their 

decision-making processes. Filling these gaps would facilitate development of more-realistic scenario-

based models that could be used by managers to inform their stakeholders. For example, there are several 

different scenario-based models either completed (Kao et al. 2017) or in development (H. Zhang, 

University of Michigan; ESR). For example, Kao et al. (2017) explored different scenarios of TP loading, 

dreissenid filtration, and fish stocking and concluded that native lake trout and rainbow trout are better 

suited to the current Lake Michigan ecosystem than Chinook Salmon.  

3) Continue to improve dialogue between those with expertise in lower trophic levels and those in fisheries. 

Specific opportunities include inviting scientists from the EPA or NOAA to report regularly on lower 

trophic levels at the annual meetings of the lake committees and continuing coordination between those 

involved in the Lake Michigan Lakewide Management Plan and the technical committee of the LMC. 
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APPENDICES 

Appendix A: Supplementary Figures and Tables 

Fig. A1. Time series of total phosphorus (TP) inputs (open circles, left axis) and predicted offshore TP 

concentrations (RPB, unpublished data; black triangles, right axis) in Lake Michigan.  
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Fig. A2. Time series of microzooplankton (rotifers and copepod nauplii) in the southwestern nearshore waters of 

Lake Michigan (SMT, SC, unpublished data).  
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Fig. A3. Time series of community composition of benthic invertebrate samples in nearshore waters on soft (panel 

a) and hard (panel b) substrate in Lake Michigan (SMT, SC, unpublished data).  

 

 

 

 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1999 2001 2003 2005 2007 2009 2011 2013 2015

P
ro

p
o

rt
io

n
al

 d
e

n
si

ty
 

a. 

Other

Dipor

Oligo

Nema

Dreiss

Chiro

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1
9

9
9

2
0

0
0

2
0

0
1

2
0

0
2

2
0

0
3

2
0

0
4

2
0

0
5

2
0

0
6

2
0

0
7

2
0

0
8

2
0

0
9

2
0

1
0

2
0

1
1

2
0

1
2

2
0

1
3

2
0

1
4

2
0

1
5

P
ro

p
o

rt
io

n
al

 d
e

n
si

ty
 

b. 

Other

Dipor

Oligo

Nema

Dreiss

Chiro



 

 

36 

Fig. A4. Map of sampling locations routinely monitored in Lake Michigan. Most of the nearshore monitoring data 

included in this paper derive from the Illinois Natural History Survey (IL NHS) and NOAA. Most of the offshore 

monitoring data are from NOAA, the USEPA GLNPO, and the USGS. Note that the USEPA National Coastal 

Condition Assessment (NCCA) sites are only sampled every five years, and data from 2010 have not been 

incorporated into this report. The Great Lakes Ecological Indicators (GLEI) sampling locations are a completed 

study funded by the USEPA to assess the ecological condition of the US coastal region.  

 -Great Lakes Aquatic Habitat Framework (see http://glahf.org/). 

 

http://glahf.org/
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Table A1. Summary of indicators that could be developed to help managers detect imminent changes in lower 

trophic levels with consequences for sustaining the biomass and production of key prey fish. Possible indicators 

were generated from discussions during a two-day workshop of the Lower Trophic Level Task Group in the summer 

of 2016 and were then edited and supplemented through conference calls and emails in February 2017. The 

indicators were ranked from strongest to weakest by 16 members of the task group with the lowest average score 

indicative of the strongest indicator. The top four indicators are bolded and are briefly described in this report. 

 

Average Ranking Indicator 

5.7  Condition of adult Alewife 

5.7  Satellite-derived chlorophyll a estimates 

6.2  Density of Mysis diluviana  

6.3  Spring TP  

7.0  Spring in situ chlorophyll a 

7.3  Benthic invertebrate (dreissenids, Diporeia spp.) densities 

7.4  Ratio of total invertebrate:prey-fish biomass 

7.6  Species composition of the zooplankton community 

8.1  Mean spring/summer water temperature 

8.9  Spring and summer Secchi-disk depth 

9.8  Proportion of sampled sites that yield key prey-fish species 

9.9  Ratio pelagic:benthic invertebrate biomass 

10.3  Mean spring/summer water-temperature warming rates 

11.3  Biomass size spectrum 

12.0  Patchiness of prey-fish biomass (signal:noise ratio) 

12.5  Ratio of diatoms:non-diatoms 
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Table A2. Summary of monitoring gaps associated with an understanding of how changes in lower trophic levels 

influence prey-fish biomass and production. Possible monitoring gaps were generated from discussion during a two-

day workshop of the task group in the summer of 2016 and were then edited and supplemented through conference 

calls and emails in February 2017. The indicators were ranked from most important to least important by 16 

members of the task group with the lowest average score indicative of the most important. The top four monitoring 

gaps are bolded and are briefly described in this report.  

Average Ranking Monitoring Gap 

3.4  Coordinated nearshore sampling of lower trophic levels (including larval fish) 

5.0  Direct measurement of primary production 

5.1  Phosphorus loading by tributary 

5.2  Simultaneous sampling of physical environment, lower trophic levels, and fish 

5.7  Annual lakewide dreissenid estimate 

5.9  Benthic invertebrate sampling on hard substrates 

6.3  Use of gliders, autonomous underwater vehicles, and remote sensing to improve 

spatiotemporal coverage of lower trophic-level monitoring 

6.8  Cladophora spp. biomass and distribution 

7.4  Abundance of dreissenid veligers over time 

7.5  Production estimates for individual zooplankton species (e.g., Daphnia galeata mendotae) 

7.7  Nanoplankton and picoplankton monitoring 

 

Table A3. Summary of knowledge gaps that limit our understanding of how changes in lower trophic levels 

influence prey-fish biomass and production. Possible knowledge gaps were generated from discussion during a two-

day workshop of the task group in the summer of 2016 and were edited and supplemented through conference calls 

and emails in February 2017. The indicators were ranked from most important to least important by 16 members of 

the task group with the lowest average score indicative of the most important. The top four knowledge gaps are 

bolded and are briefly described in this report. 

Average Ranking Knowledge Gap 

2.4  What lower trophic-level changes bottleneck recruitment of age-0 fish to age 1+? 

3.8  What is the relative importance of reduced nutrients and quagga mussel filtration and 

their potential interaction in driving declining pelagic primary production? 

4.1  Have changes in the zooplankton community affected prey-fish biomass to the extent 

that fishery managers should reconsider their objectives? 

4.1  What are the key drivers of phosphorus recycling? 

4.9  Does increasing benthic production compensate for decreasing pelagic production? 

4.9  Where do dreissenid veligers and other microzooplankton fit in the food web? 

5.4  What is Lake Michigan’s carrying capacity for quagga mussels? Do profundal forms of 

quagga mussel reproduce offshore? What limits quagga mussel recruitment to the settled 

stage? 

6.5  Where do benthic macroalgae (e.g., Cladophora spp.) decompose? What proportion is 

transported offshore knowing some proportion ends up on beaches?  

  



 

 

39 

Appendix B. How Dreissenids Can Disrupt the Food Web of Lake Michigan  

The introduction of Dreissena polymorpha and D. bugensis (hereafter, dreissenids) appears to have disrupted 

the fabric of the entire pelagic food web so that this phenomenon may represent one of the single, largest 

perturbations ever observed to Lake Michigan. The large impact occurred because dreissenids have high 

clearance rates over a broad range of particles (~1-200 µm) that encompass many elements of the entire 

plankton assemblage (Fig. 1, main text). Dreissenid feeding is unique because no native invertebrate in Lake 

Michigan is able to consume plankton from all size categories (pico, nano, and microplankton; Fig. 1), and, 

furthermore, grazing likely has led to complex changes at higher trophic levels (zooplankton and fish; Fig. 1, 

main text).  

First, dreissenids are capable of removing plankton in such large quantities (Denef et al. 2017) that their 

introduction can account for the decline observed from 1987 to 2013 for three size-classes of the Lake 

Michigan food web (Carrick et al. 2015). Specifically, mussel filter-feeding appears to have diminished larger 

microplankton, including ciliated protists (Fig. 1, main text, left side) and diatoms (Fig. 1, main text, right 

side). Plankton in the nanoplankton- and picoplankton-size categories have also been depleted, although not as 

dramatically as seen in the microplankton. These differential changes among plankton size groups probably 

occurred because pico- and nanoplankton grow fast enough to counterbalance the effects of mussel grazing 

(see Carrick et al. 2015).  

Second, the interactions between dreissenids and specific components of the food web have had important 

implications that are not straightforward particularly for the larger organisms that make up the diet of key prey 

fish, such as Alewife. For example, there is considerable evidence that dreissenids may be outcompeting 

mesozooplankton (e.g., Daphnia galeata mendotae, diaptomids, Diacyclops thomasi) for food because they 
can prey on the entire size spectrum of available plankton prey (Jørgensen et al. 1984; Lavrentyev et al. 2014; 

Tang et al. 2014) unlike their mesozooplankton counterparts that each feed very narrowly on specific plankters 

(Vanderploeg 1994; see Table B1). This constraint, in turn, has negative consequences for organisms that eat 

mesozooplankton, such as larger predaceous macrozooplankton (i.e., Bythotrephes longimanus) and 

planktivorous fish (i.e., Alewife). In fact, trophic position and size may not be well correlated (Table B1); 

therefore care must be exercised in using size as a proxy for trophic position. 

Lastly, the fact that mussels now occupy a niche that overlaps both seasonally and spatially with native 

mesozooplankton species has created strong ecological bottlenecks between the two groups. During the 

isothermal seasons (fall and spring), dreissenids have access to much of the water column due to vertical 

mixing (Vanderploeg et al. 2010; Rowe et al. 2015); therefore, dreissenids could reduce resources available to 

mesozooplankton, which are found throughout the water column. During summer, dreissenid filtering will 

affect the deep-chlorophyll layer, now partially descended to the upper hypolimnion. Such filtering has 

potential impacts during the day on hypolimnetic mesozooplankton, such as diaptomids and D. galeata 
mendotae, the latter of which shows very-strong diel-vertical migration. During early stratification, when 

zooplankton is concentrated in the epilimnion, phytoplankton populations in the same layer possibly will not 

have recovered from dreissenid filtering. Thus, the perturbation from the introduction of dreissenids will likely 

have varying consequences on specific components of the mesozooplankton, which in turn affects the feeding 

success of different life stages of planktivorous fish (see Vanderploeg et al. 2012).  
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Table B1. Equivalent spherical-diameter (ESD) ranges and feeding modes compared to trophic position above 

primary producers (estimated from stable isotopes) (Driscoll et al. 2015; Turschak and Bootsma 2015) relative to 

Daphnia galeata mendotae, the primary daphnid herbivore in Lake Michigan. The size ranges are those best used 

for separating taxa with an optical plankton counter (Liebig and Vanderploeg 2008; HAV, unpublished data).  

ESD (mm) Taxon Feeding Mode/Preferred Prey Trophic Position 

0.25-0.50  Nauplii, copepodites, and small adult 

copepods
13

 

Omnivores and carnivores 2º  

0.50-0.75  Small D. galeata mendotae instars Filter feeder 1º  

  Large diaptomids (adults) Omnivores 2º  

0.75-1.50  Large D. galeata mendotae instars Filter feeder 1º  

  Limnocalanus macrurus adults Predator of copepods 3º  

1.50-3.00  Bythotrephes longimanus Predator with preference for 

cladocerans 

2º  

  

                                                        

13
Diacyclops thomasi and Leptodiaptomus minutus. 
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