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Genetic Guidelines for the Stocking of Lake Sturgeon (Acipenser 
fulvescens) in the Great Lakes Basin 

ABSTRACT 

Many lake sturgeon populations (Acipenser fulvescens) in the Great Lakes 
basin are far below historic population sizes, and several fishery 
management agencies are interested in promoting species recovery. Due to 
low adult abundance and poor levels of natural recruitment in many 
populations, stocking has been advocated as an important management 
tool. With increased interest in lake sturgeon stocking, genetic data and 
theories can provide valuable information to guide stocking decisions. 
Genetic data were analyzed to examine genetic relationships between 
different spawning locations. Six genetic stocking units were defined 
across the Great Lakes basin, and criteria for the identification of priority 
conservation populations were established. Input was received from 
managers and biologists from throughout the basin regarding management 
and stocking issues concerning lake sturgeon. A decision tree was created, 
based on genetic principles and foreseeable management scenarios, to 
assist managers in selecting appropriate donor populations for stocking 
sites. Recommendations for the design and implementation of a stocking 
program were included in the guidelines along with a general overview of 
literature and principles on which the guidelines were developed. The 
development of these guidelines can provide a model for the incorporation 
of genetic data into management decisions targeting species conservation. 

INTRODUCTION 

These guidelines use existing genetic data and population genetics theory to assist 
decision making regarding the stocking of lake sturgeon (Acipenser fulvescens). The 
guidelines apply to areas within the Great Lakes basin as well as to inland lakes 
connected to the Great Lakes (including those lakes separated from the Great Lakes basin 
by dams). They are intended to guide the development of regional stocking strategies and 
to be incorporated into lake sturgeon management plans. The guidelines are not 
prescriptive for every management situation because all possible circumstances cannot be 
anticipated. Principles are described and recommended rules for their application are 
offered in the form of a decision tree that addresses different management situations. 
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Comprehensive lake sturgeon management plans should be developed that address issues 
such as evaluation of impediments to population recovery and definition of management 
goals (Krueger and Decker 1999). Stocking should be incorporated into lake sturgeon 
management plans when it addresses and helps to solve impediments. These guidelines 
address genetic concerns that arise when stocking is used as a management action. For 
stocking to be a priority management tool, it is imperative that non-genetic factors be 
considered as well. A thorough evaluation of habitat, existing demographic data, and 
other relevant data should be completed prior to the integration of these genetic 
guidelines into the stocking portion of a lake sturgeon management plan. 

Portions of this document were developed from information presented and discussed by a 
workgroup of the Lake Michigan Lake Sturgeon Task Group. Participants in this 
workgroup, in addition to the authors, are listed in the Acknowledgements of this 
document and include representatives from state, federal, and tribal natural-resource 
agencies having expertise with lake sturgeon biology and culture and experts from 
various universities with experience in sturgeon genetics.  

The guidelines do not represent a policy statement from federal, provincial, state, or tribal 
natural-resource agencies nor from the Great Lakes Fishery Commission. Instead, they 
represent scientific advice on the part of the authors for the management of lake sturgeon 
in the Great Lakes. 

BACKGROUND 

Many lake sturgeon populations throughout the Great Lakes basin are remnants of their 
historical numbers. Overfishing, habitat deterioration (including the construction and 
operation of dams), and poor water quality contributed to lake sturgeon extirpation in 
many Great Lakes locations and drastically reduced the size of the remaining populations 
(Smith 1972). Lake sturgeon may also have suffered some level of mortality from sea 
lamprey (Petromyzon marinus) predation (Patrick 2007). Although conditions for lake 
sturgeon have improved in many ways, recovery has been slow or absent, and few efforts 
have been directed specifically towards sturgeon recovery. Lake sturgeon do not reach 
sexual maturity until 14-33 years of age (Harkness and Dymond 1961), and evidence 
exists for spawning-site fidelity (Auer 1999; DeHaan et al. 2006). Therefore, because 
lake sturgeon take a long time to mature, recovery in population size and natural 
recolonization of vacant spawning sites by lake sturgeon often may not meet the recovery 
time frame desired by the public, fisheries stakeholders, and management agencies.  



 

 

 

 
 
3 

Fish-management agencies use stocking (placement of artificially propagated fish or 
naturally developing eggs or the translocation of post-larval fish into water bodies) to 
accomplish a variety of purposes. Stocked fish or fertilized eggs can be used to 
supplement and rehabilitate existing marginal populations, develop new populations, or 
reintroduce fish to a location where they have been extirpated. Many naturally 
reproducing populations of vertebrates have been re-established within their natural 
ranges by the use of stocking as a management action, often by adult translocation (e.g., 
greater prairie chicken (Westemeier et al. 1998; Bouzat et al. 2009). Successful 
reintroductions of fish, however, seem to be less common than for other groups of 
animals or, at least, less reported. Examples of successful reintroductions of fish include 
flannelmouth sucker (Catostomus latipinnis) (Mueller and Wydoski 2004), Gila 
topminnow (Poeciliopsis occidentalis occidentalis) (Simons et al. 1989, greenback 
cutthroat trout (Oncorhynchus clarki) (Harig et al. 2000), brown trout (Salmo trutta) 
(Caudron et al. 2006), and lake trout (Salvelinus namaycush) (Hansen et al. 1995). 
Translocation stocking was used for the successful flannelmouth sucker and greenback 
cutthroat trout reintroductions. Stocking of artificially propagated (hatchery-origin) fish 
were used for Gila topminnow, brown trout, and lake trout reintroductions. 

Stocking can potentially speed the recovery of lake sturgeon populations by reducing the 
dependency on the slow process of natural recolonization. For example, in the state of 
New York, lake sturgeon are listed as a threatened species. The New York State 
Department of Environmental Conservation requires the establishment of self-sustaining 
lake sturgeon populations in at least eight separate locations within their historic range 
for delisting (Carlson et al. 2002). To accomplish this objective, New York is actively 
pursuing a lake sturgeon stocking program to reintroduce those extirpated. The states of 
Michigan and Wisconsin have reintroduced lake sturgeon to waters where they have been 
extirpated through stocking of eggs, larvae, fingerlings, and occasionally adults 
(translocation). Hatchery-reared fish also have been used by state natural-resource 
agencies to supplement naturally reproducing lake sturgeon populations in Lake 
Winnebago (Wisconsin) and Black Lake (Michigan). Rearing facilities also have been 
employed to improve survival by bringing larval fish collected from the wild into a 
culture facility for several months before releasing them back into the wild. The Little 
River Band of Ottawa Indians has employed this technique on the Big Manistee River 
using a facility located streamside (Holtgren et al. 2007), and the Michigan Department 
of Natural Resources and Environment and Michigan State University have employed 
this technique on the Black River using a streamside facility and a traditional off-site 
hatchery (Crossman 2008).  
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The goal of management can also include providing for the customs of Native 
Americans, who may desire lake sturgeon for cultural or ceremonial purposes in addition 
to wanting them restored to native waters. This interest stimulated the reintroduction of 
lake sturgeon to the upper St. Louis River (Minnesota) by the Fond du Lac Band of Lake 
Superior Chippewa and the upper Wolf River (Wisconsin) by the Menominee Tribe of 
Wisconsin (Runstrom et al. 2002). Streamside rearing on the Big Manistee River 
(Michigan) by the Little River Band of Ottawa Indians (Holtgren et al. 2007) has been 
implemented to protect wild-captured sturgeon larvae for release as juveniles. Although 
stocking and artificial rearing can be an important part of sturgeon management, caution 
must always be exercised to avoid potential negative genetic consequences on both 
reintroduced and persisting lake sturgeon populations.  

Genetic Risks of Stocking 

The genetic risks from stocking include outbreeding depression, an inadequate 
representation of genetic diversity in the captive population or the stocked progeny, 
and/or artificial selection. The genetic consequences of stocking may not be observed 
readily because of the lake sturgeon’s life history and its relative inaccessibility during 
non-spawning periods. Therefore, a risk-adverse management approach should be 
adapted. This section provides brief information on the theories behind these genetic risks 
because these theories have been detailed thoroughly elsewhere (e.g., Miller and 
Kapuscinski 2003; Reisenbichler et al. 2003; Araki et al. 2007). 

Outbreeding Depression 

Outbreeding depression is reduced fitness, measured as reproductive success, resulting 
from the interbreeding between genetically distinct populations or species (Hallerman 
2003; Edmands 2007). Reduction in fitness is due to a loss of genetic adaptations or a 
disruption of co-adapted gene complexes (several genes working together, resulting in the 
expression of a certain trait (Dobzhansky 1941)) that were present in the original 
population (Lynch 1991). For example, outbreeding can result in the loss of genetic 
adaptations for migrations (Altukhov and Salmenkova 1987). The loss of adaptation may 
occur in either the first or second generation of offspring after the interbreeding between 
distinct populations, but the reduction in fitness will not be observed until the adaptation 
that was lost is needed for survival or reproduction. Reductions in fitness take many 
forms, and there appear to be no reliable indicators for the effect that outbreeding will 
have on fitness (McClelland and Naish 2007). 
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Alternatively, outbreeding can result in hybrid vigor or increased fitness in hybrids, likely 
due to the masking of deleterious alleles (Remington and O’Malley 2000). In populations 
that are highly inbred and experiencing detrimental fitness consequences, very low levels 
of immigration can improve the fitness of the population (Tallmon et al. 2004). Straying 
of even a few stocked individuals, over time, could exceed the low levels of immigration 
required to improve fitness without diluting locally adaptive alleles.  

Lake sturgeon populations in the Great Lakes basin harbor substantial genetic diversity 
(DeHaan et al. 2006; Welsh et al. 2008), and mixing lake sturgeon populations 
genetically could disrupt their co-adapted gene complexes. Data show that the majority of 
lake sturgeon populations are genetically distinct from each other (McQuown et al. 2003; 
DeHaan et al. 2006; Welsh et al. 2008). If reintroduced lake sturgeon stray to nearby 
natural populations for spawning, outbreeding depression may occur and disrupt 
genetically based adaptive differences. In salmonids, straying appears to be more 
frequent among hatchery-produced fish than wild fish (Quinn 1993; Schroeder et al. 
2001). In the absence of imprinting, stocked sturgeon may also be more likely to stray. 
Therefore, outbreeding depression should be a major concern when implementing a 
stocking strategy.  

Lake sturgeon, because of their long generation time and life spans, have not been studied 
for evidence of outbreeding depression. However, several examples exist in the literature 
that have demonstrated the occurrence of outbreeding depression in populations of other 
fish species. Offspring from wild-bred populations of rainbow trout (Oncorhynchus 
mykiss) had higher survival in Lake Superior tributary streams in Minnesota than 
offspring resulting from crosses between wild-bred and hatchery strains (Miller et al. 
2004). Hatchery-hybrid offspring had a reduced chance of surviving the first winter. In 
this case, the effects of outbreeding may have been amplified when the offspring were 
faced with harsh environmental challenges. Similarly, reduced fitness, measured by 
changes in embryo development time and survival, was observed in progeny from crosses 
of three geographically separate populations of southeast Alaska coho salmon 
(Oncorhynchus kisutch) relative to control lines (Granath et al. 2004). In pink salmon 
(Oncorhynchus gorbuscha), decreased survival in the F2 generation of crosses between 
genetically distinct populations provided evidence for outbreeding depression due to the 
breakdown of co-adapted gene complexes (Gilk et al. 2004). Outbreeding between 
largemouth bass (Micropterus salmoides) populations with genetic differentiation (i.e., 
FST) values of 0.05 (comparable to values observed in lake sturgeon studies in the Great 
Lakes) resulted in increased infectious disease susceptibility (Goldberg et al. 2005). 
Therefore, intentional mixing of genetically distinct populations should be used only in 
limited circumstances when populations are suffering from inbreeding depression 
(Edmands 2007). 
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Loss of Within-Population Genetic Variation 

Within-population genetic variation may be reduced when a representative sample is not 
obtained from the donor population during collection of the brood stock and/or 
propagation of gametes collected from adults. Whether gametes, larvae, or adults are 
collected, only a small portion of the population is represented, and, therefore, a 
representative sample of the genetic diversity may not be present. The allele frequencies 
in wild and captive populations can be different, and some low-frequency alleles may be 
absent in captive populations (Allendorf and Ryman 1987). When collecting individuals 
from donor populations, an adequate number of individuals should be sampled to ensure 
that genetic diversity is fully represented. Collecting individuals across the spatial and 
temporal variation shown by a spawning population should be considered when making 
collections. Crossman (2008) provided evidence for genetic differences between adults 
spawning early and late in the season as well as adaptations of early-larval life-history 
traits to environmental conditions at the time of spawning. 

Inbreeding, or the mating of close relatives, is expected to decrease a population’s 
viability (Mills and Smouse 1994) due to inbreeding depression, i.e., reduced fitness 
measured by survival and reproductive success. Inbreeding depression can be caused by 
recessive deleterious genes that are expressed because of increased homozygosity, or by a 
decrease in heterozygotes, where heterozygotes have a fitness advantage (Charlesworth 
and Charlesworth 1987). The resultant decrease in heterozygosity may not be observed 
for several generations, and numerically depressed populations may have large numbers 
of related individuals (i.e., high coancestry) without an apparent decrease in 
heterozygosity. Currently, no evidence exists for inbreeding depression in remnant lake 
sturgeon populations. DeHaan et al. (2006) did not observe a correlation between genetic 
diversity and population size. Species with long generation times may be buffered from 
the effects of inbreeding (Lippe et al. 2006). Polyploidy may also protect lake sturgeon 
from inbreeding depression. Multiple chromosomal copies can delay homozygosity 
(Allendorf and Waples 1996). However, if evidence of inbreeding depression is found in 
the future, then management efforts may focus on enhancing the genetic diversity of 
inbred populations. Modeling efforts may be able to provide insight into the risk of 
inbreeding depression for remnant lake sturgeon populations (Schueller and Hayes, 
unpublished data). 
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Inbreeding may increase under artificial production through the mating of related adults 
and/or the release of large numbers of related offspring, possibly leading to inbreeding 
depression. Ryman (1970) observed decreased survival in inbred families of hatchery-
released Atlantic salmon (Salmo salar) compared to non-inbred families also released 
from the hatchery. Reduced survival and growth was observed also in hatchery-reared 
inbred Pacific salmon (Oncorhynchus spp.) (Kincaid 1983). Additionally, if adults from 
populations characterized by high coancestry are used as a donor stock for stocking, the 
resulting progeny will be inbred and likely will be less fit than progeny from matings 
between unrelated adults. 

The effective population size, Ne, is relevant to managers engaged in lake sturgeon 
rehabilitation because Ne determines the rate of inbreeding accrual, loss of genetic 
diversity, or change in allele frequencies. Ne is the size of a hypothetical ideal population 
that would experience the same amount of genetic change as the population under 
consideration (Wright 1931, 1938) and is often smaller than census population numbers 
(N) due to unequal sex ratios, variance in family sizes, and changes in population size 
over generations (Kimura and Crow 1963). In hatchery settings, the large number of eggs 
from female sturgeon and the difficulty in handling adult fish can encourage the use of 
small numbers of parents. However, these practices can decrease Ne. Crossman (2008) 
reared eggs from different females separately in hatcheries and documented large 
variance among females in egg and larval survival, which dramatically reduced Ne.  

A trade-off exists, known as the Ryman-Laikre effect (Ryman and Laikre 1991), in which 
a gain in the total production of offspring through propagation is accompanied by a 
reduction in Ne and a loss of genetic diversity in the population as a whole. 
Supplementation with offspring from comparatively few adults, but with higher survival 
relative to wild progeny, will increase variance in reproductive success in the entire 
population (including both wild and hatchery-produced fish), resulting in a decrease in 
Ne. The effect is magnified as the proportion of hatchery progeny increases. This trade-
off can be avoided when the ratio of Ne to the census population size (Ne:N) of the captive 
population is greater than the corresponding ratio in the wild population (Waples and Do 
1994). Natural populations often have an Ne:N ratio less than one. Therefore, the 
corresponding ratio in the captive population should be close to one to avoid the Ryman-
Laikre effect. If a wild population is chosen to receive stocked fish (supplementation), 
then it is likely that the natural population in the area has a small population size. The 
hatchery contribution could swamp the genetic contribution made by the natural 
population, resulting in a decreased effective population size. This result was realized in 
simulations of proposed stocking of Gulf sturgeon (Acipenser oxyrinchus desotoi) into 
the Suwanee River, Florida (Tringali and Bert 1998). 
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Artificial Selection 

Hatchery rearing conditions can create a different selection regime for sturgeon relative 
to environmental conditions experienced by individuals in natural populations. This shift 
in selection pressure can occur during the collection of source individuals, the rearing of 
offspring, and/or the release of offspring (Busack and Currens 1995; Campton 1995). 
Changes in selection pressure can result in a different genetic makeup for the hatchery 
fish in comparison to wild fish and may favor genotypes that are not well suited to life 
under natural conditions or to a changing environment (Araki et al. 2007; Hutchings and 
Fraser 2008). The decrement in fitness of hatchery progeny is a function of the time their 
genes experience hatchery selection (Lynch and O’Hely 2001; Ford 2002). These 
principles have been used to establish regional policies governing the use of hatchery-
reared fish (e.g., Pacific salmon (Mobrand et al. 2005)). 

When collecting source individuals, separate collections should be made both temporally 
and spatially at the spawning site. Collecting at a single time during the spawning run 
may inadvertently select for early or late spawning times (Crossman 2008). Collecting at 
a single location within the spawning site may inadvertently select for certain habitat 
preferences that, if genetically based, could result in the lack of representation of 
potential ecotypes in the resulting offspring.  

During rearing, selection under hatchery conditions can result in the survival of sturgeon 
adapted to the hatchery environment and in the loss of traits required for long-term 
survival and reproductive success in the wild. For example, sturgeon stocking within the 
Azov Sea basin (Russia) has been occurring since the late 1950s. Within this basin, the 
Kuban River has experienced a loss of ecotypes, demonstrated by a shortened spawning 
run and breeding season (Chebanov et al. 2002). The loss of diversity has been attributed 
to the rearing conditions and the selective breeding of productive females used within the 
stocking program, resulting in artificial selection that diminishes the diversity of the 
sturgeon being released.  

Timing of the release of hatchery offspring also can result in artificial selection through 
lack of exposure to the selective pressures faced by certain life stages in the wild. If the 
heaviest natural selective pressure and resulting mortality are experienced when sturgeon 
are young and the sturgeon are released into the wild at a later life stage, the released 
sturgeon are protected from the beneficial effects of natural selection. This effect is the 
conundrum of hatchery propagation because hatcheries purposefully protect fish past 
critical life stages that come before they are stocked. Hatchery winnowing can result in a 
much higher effective population size for the hatchery populations compared to natural 
populations, leading to the Ryman-Laikre effect described in an earlier section (Loss of 
Within-Population Genetic Variation). 
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Conservation Stocking Principles 

For the reasons stated above, stocking may result in negative consequences to remnant 
lake sturgeon populations and to the populations being supplemented or reintroduced 
through stocking. Therefore, stocking plans should be discussed and coordinated with 
other agencies that manage lake sturgeon populations within the area where released fish 
are expected to occur. Stocking should be implemented only when other actions will not 
accomplish management goals or objectives within a reasonable time. When stocking is 
deemed necessary, the following principles should be adopted to minimize negative 
genetic consequences. These principles are discussed in more detail later. 

• The genetic structure and diversity of existing healthy natural populations should be 
preserved. 

• Selection of appropriate donor stocks for reintroduction should be based on their 
likely genetic similarity to neighboring populations. 

• The effective population size of lake sturgeon populations, both wild and hatchery 
produced, should be maximized. Practices such as maximizing the number of parents 
used for each generation and equalizing family contributions help maximize the 
effective population size. 

• Mating practices should preserve the genetic diversity of the donor population so as 
to reduce the potential for inbreeding. 

• Rearing techniques for propagated fish should promote homing so as to minimize the 
likelihood of straying by hatchery fish. 

• Sturgeon that are released into the wild should represent the natural genetic diversity 
of the donor population. 
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Recommendations 

The following recommendations implement the above principles and provide a 
foundation for the subsequent guidelines: 

• Assess current population status and trends at the target river as well as suitability of 
existing habitat for maintaining a self-sustaining population. 

• Evaluate potential for existing populations to colonize the target river. 
• Use appropriate donor stock. 
• Maximize the number of parents used each year. 
• Equalize family contributions. 
• Continue stocking over a sufficient period to generate a genetically diverse 

population with multiple age-classes. 
• Monitor stocked population and neighboring populations (including the donor 

population). 

GENETIC STOCKING GUIDELINES 

Genetic stocking guidelines, divided into four steps, were developed using the above 
conservation stocking principles and recommendations, and they are intended to help 
evaluate the appropriateness of stocking for different management situations and to guide 
decision making and implementation (Fig. 1). The guidelines recommend methods for 
implementing a stocking program that reduces genetic risks to lake sturgeon populations. 
The first step in the guidelines identifies populations or groups of populations in the 
Great Lakes to consider as potential donors and those populations likely to be affected by 
stocking. The second step identifies populations that should be given a high priority for 
preservation. These populations have characteristics that are deemed important to 
preserve, and management actions that affect them should be conservative. The third step 
uses a decision tree that incorporates the information from the previous two steps so as to 
evaluate whether a suitable donor population exists. The fourth step recommends 
procedures for implementing a stocking program. The first three steps begin with a 
section describing purpose and rationale, followed by a section providing relevant 
background information, and ending with suggested management actions. The fourth step 
is divided into sections describing the aspects of a stocking program and methodological 
suggestions, including a detailed rationale. 
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Fig. 1. Progression of steps in the genetic stocking guidelines. 
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STEP 1: IDENTIFICATION OF GENETIC STOCKING UNITS 

Action Item: Identify the genetic stocking unit(s) (GSU) or unassigned 
population geographically closest to the proposed stocking site. 

Purpose 

The purpose of this section is to help identify the gamete source population best suited 
for the site being considered for stocking. A genetic stocking unit is a population or group 
of populations that may be used as a donor source for stocking within that GSU. GSUs 
will also be used to assess which spawning populations are most likely to be affected by 
stocking. Conservation units have been identified based on both genetic and ecological 
data (e.g., Crandall et al. 2000; Fraser and Bernatchez 2001; Palsbøll et al. 2006). 
However, the GSUs described in these guidelines were defined solely by genetic data and 
are not intended for management purposes beyond decisions regarding stocking. This 
step will identify GSUs that contain populations that are likely to be genetically similar. 
The use of such a population as a donor at other sites within that GSU can reduce the 
likelihood of outbreeding depression.  

Methods 

To define GSUs, data for 30 lake sturgeon populations, based on standardized 
microsatellite markers, were compiled from the University of California-Davis (Welsh et 
al. 2008) and Michigan State University (DeHaan et al. 2006) (Fig. 2, Table 1). These 
markers have been standardized among different laboratories to facilitate data synthesis. 
All samples were from spawning adults unless otherwise noted. Data were compiled from 
eight microsatellite loci used in common by the two laboratories. Pairwise FST values 
were calculated for each pair of spawning populations that had more than 20 samples to 
determine if the spawning populations were genetically distinct. FST values can range 
from 0 to 1, with increasing values corresponding to increasing genetic differentiation. 
Populations with less than 20 samples lacked statistical power to detect significant 
genetic differences. Genetic differences between spawning populations may be a result of 
reproductive isolation due to natal homing or genetic drift. 
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Fig. 2. Map of sample locations. Circles indicate sampling location. Numbers correspond to the 
locations in Table 1. 
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Table 1. Spawning locations included in the designation of GSUs. Location on Fig. 2 and sample 
sizes are noted. Samples from non-spawning individuals are denoted with an asterisk. 

Identifying number  River Sample size 
Lake Superior:    
 1 Bad 136  
 2 White 43  
 3 Sturgeon 78  
 4 Kaministiquia* 85  
 5 Black Sturgeon* 57  
 6 Pic 33  
 7 Batchawana 6  
 8 Goulais 23  
Lake Michigan:    
  9 Menominee 68  
 10 Peshtigo 54  
 11 Oconto 18  
 12 Fox 46  
 13 Wolf 111  
 14 Muskegon 17  
 15 Manistee 89  
Lake Huron:    
 16 Black Lake 114  
 17 Mississaugi 52  
 18 Nottawasaga 8  
 19 Spanish 47  
 20 Thessalon 3  
 21 East Lake Nipissing 35  
 22 West Lake Nipissing 40  
Lake Erie:    
 23 St. Clair 100  
 24 Detroit* 33  
Lake Ontario:   
 25 Lower Niagara* 50  
 26 Black 11  
St. Lawrence:   
 27 Lake Champlain 26  
 28 St. Lawrence 54  
 29 Grasse 28  
 30 Des Prairies 14  
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Genetic distances (Cavalli-Sforza and Edwards’ chord distance (Cavalli-Sforza and 
Edwards 1967)) between populations with greater than ten samples were also calculated 
to generate trees describing the relationships among the different populations (Fig. 3). 
Two locations in the Hudson Bay drainage, Mattagami River (n = 40) and Rainy 
River/Lake of the Woods (n = 27), were included in the analysis to offer a perspective on 
out-of-basin differences. 

A Bayesian approach for identifying population clusters was implemented using the 
software STRUCTURE (Pritchard et al. 2000).  Without using prior information about 
sampling location, STRUCTURE tests the likelihood of various numbers of population 
clusters (K), given the genetic data and based on Hardy-Weinberg equilibrium and 
linkage disequilibrium.  Populations with fewer than ten samples were therefore included 
in the analysis.  The natural-log likelihood values were plotted and consistent genetic 
discontinuities were identified among the most likely values of K.  Clusters were 
determined by identifying those populations that consistently grouped apart for several 
likely values of K.  Membership coefficients to the different clusters were calculated for 
each population. 

 

Fig. 3. Neighbor-joining tree (based on Cavalli-Sforza and Edwards’ chord distance) with 
sampled populations with 10+ samples, based on genetic distance calculated using eight 
microsatellite loci. Numbers correspond to bootstrap values > 50% (out of 10,000 replicates). 
Purple text is Lake Superior, red text is Lake Michigan, blue text is Lake Huron, green text is 
Lake Erie, orange text is Lake Ontario/St. Lawrence, and black text is Hudson Bay. 
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Results 

After correcting for multiple comparisons, the majority of populations were statistically 
distinguishable from each other based on genetic data (p < 0.01, Table 2). Comparisons 
that were not genetically distinct include the following pairs: Bad vs. White, Fox vs. 
Wolf, Black (tributary to Black Lake) vs. Detroit vs. lower Niagara, East Nipissing vs. 
West Nipissing, Detroit vs. St. Clair vs. lower Niagara, and lower Niagara vs. St. 
Lawrence. 

Our GSU designations correspond to consistencies among the results of the neighbor-
joining tree (Fig. 3), the STRUCTURE analysis (Table 3, Fig. 4), and the pairwise FST 
values (Table 2). In general, the genetic data indicated that populations within Lake 
Superior are highly differentiated, populations on the eastern shore of Lake Michigan are 
more closely related to Lake Huron populations than to populations from Green Bay 
(Lake Michigan), and populations in Lakes Huron, Erie, and Ontario are less genetically 
differentiated.  

 

Table 2. Pairwise FST values between all spawning locations with more than 20 samples. 
Numbers correspond to locations in Fig. 2 and Table 1. Bold values shaded gray are not 
significant (after correction for multiple comparisons, p > 0.01). 
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Table 3. Membership coefficients for each spawning location to the clusters identified by 
STRUCTURE (K = 7), with highest cluster membership in bold (see Table 1 and Fig. 2 for site 
locations). 

 Cluster 
Spawning site 1 2 3 4 5 6 7 

Mattagami R. 0.02 0.91 0.01 0.01 0.02 0.02 0.02 
Rainy R. 0.02 0.92 0.01 0.01 0.01 0.01 0.01 
Bad R. 0.04 0.05 0.05 0.05 0.02 0.06 0.72 
White R. 0.04 0.03 0.08 0.05 0.03 0.08 0.69 
Sturgeon R. 0.18 0.12 0.11 0.09 0.07 0.16 0.27 
Kaministiquia R. 0.11 0.10 0.11 0.09 0.07 0.47 0.06 
Goulais R. 0.15 0.03 0.26 0.12 0.08 0.18 0.18 
Batchawana R. 0.23 0.02 0.54 0.07 0.03 0.05 0.07 
Black Sturgeon R. 0.05 0.13 0.06 0.03 0.08 0.60 0.06 
Pic R. 0.14 0.07 0.10 0.07 0.09 0.47 0.06 
Menominee R. 0.21 0.06 0.08 0.08 0.25 0.24 0.09 
Wolf R. 0.13 0.04 0.08 0.09 0.54 0.10 0.02 
Manistee R. 0.06 0.02 0.09 0.50 0.11 0.14 0.08 
Muskegon R. 0.09 0.03 0.07 0.41 0.15 0.16 0.11 
Peshtigo R. 0.07 0.03 0.14 0.11 0.47 0.15 0.04 
Fox R. 0.09 0.04 0.04 0.15 0.54 0.10 0.03 
Oconto R. 0.08 0.02 0.06 0.06 0.58 0.14 0.06 
Black Lake 0.24 0.03 0.16 0.23 0.14 0.12 0.07 
Mississaugi R. 0.11 0.04 0.26 0.18 0.15 0.21 0.07 
E. Lake Nipissing 0.06 0.02 0.73 0.09 0.05 0.04 0.02 
W. Lake Nipissing 0.06 0.04 0.67 0.07 0.05 0.08 0.03 
Thessalon R. 0.03 0.02 0.70 0.02 0.02 0.03 0.19 
Nottawasaga R. 0.14 0.03 0.20 0.33 0.13 0.10 0.09 
Spanish R. 0.05 0.03 0.55 0.17 0.06 0.12 0.02 
Detroit R. 0.16 0.04 0.19 0.40 0.09 0.08 0.04 
St. Clair R. 0.18 0.03 0.13 0.36 0.11 0.08 0.11 
L. Niagara R. 0.21 0.07 0.10 0.31 0.11 0.14 0.06 
Black R. 0.30 0.22 0.06 0.21 0.11 0.09 0.02 
Grasse R. 0.64 0.05 0.08 0.03 0.04 0.07 0.11 
Des Prairies R. 0.41 0.08 0.10 0.12 0.09 0.11 0.10 
St. Lawrence R. 0.49 0.07 0.09 0.13 0.12 0.07 0.03 
Lake Champlain 0.51 0.07 0.05 0.05 0.26 0.03 0.03 
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Fig. 4. Results from STRUCTURE analyses: a) natural-log likelihood values for cluster numbers 
(K) 1-15, with 5 replicates for each cluster number; b) diagram depicting cluster groupings. 
Populations with poor assignment to a cluster include: Sturgeon, Goulais, Menominee, Black 
Lake, Mississaugi, and Nottawasaga. 

 

a) 

 

b) 
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Application 

Substantial literature exists on the use of genetic data to delineate evolutionarily 
significant units (ESUs) and management units (MUs). The ESU concept was used by 
Waples (1991, 1995) to identify salmon populations for conservation. His ESU definition 
was incorporated into the National Marine Fisheries Service’s listing criteria, under the 
Endangered Species Act (ESA), for distinct population segments. Under this definition, 
an ESU is a population that “can be shown to be reproductively separate from other 
populations and have unique or different adaptations” (Waples 1991). Genetic data can 
be used to demonstrate reproductive isolation and the genetic uniqueness of populations 
(e.g., Hedrick et al. 2001). This definition of ESUs has been criticized as being too 
narrow and not fulfilling the purposes of the ESA (Pennock and Dimmick 1997). Moritz 
(1994) narrowed the ESU definition even further, stating that an ESU is a population that 
is “reciprocally monophyletic for mitochondrial DNA alleles and show[s] significant 
divergence of allele frequencies at nuclear loci.” Moritz also introduced the definition of 
MUs as “populations with significant divergence of allele frequencies at nuclear or 
mitochondrial loci, regardless of the phylogenetic distinctiveness of the alleles” (Moritz 
1994). Subsequently, other authors have proposed ESU and MU definitions that 
encompass criteria beyond genetic considerations. Crandall et al. (2000) raised important 
concerns about the focus on reciprocal monophyly, which can exclude adaptive genetic 
differences between populations. These authors also stressed the importance of the 
incorporation of ecological data in ESU designations. Fraser and Bernatchez (2001) 
proposed an ESU definition that acknowledges the defining criteria will often depend on 
the context. Palsbøll et al. (2006) proposed combining demographic and genetic 
parameters to generate biologically meaningful MUs. 

In the context of lake sturgeon genetic management, several of these proposed definitions 
for ESUs and MUs do not meet the purposes of these guidelines. Prior to designating any 
unit for conservation, the goals of management should be defined and the units should 
facilitate achievement of that management goal (Taylor and Dizon 1999). One of the 
goals of these guidelines is to assist with the selection of appropriate donor populations 
that would reduce the risk of outbreeding depression from stocked fish that stray. 
Therefore, donor populations should be selected that are likely to be the least genetically 
differentiated from the natural remnant populations most likely to absorb stocked strays. 
Because the population at the reintroduction site may have been extirpated, it is 
impossible to accurately determine which donor population is most genetically similar.  
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Therefore, the GSU designations need to incorporate this uncertainty and make 
assumptions (using genetic and non-genetic data) about which population is likely to be 
the most appropriate donor. Fig. 5 depicts the current GSU designations based on existing 
data, and Fig. 6 shows the location of the GSUs. 

 

Fig. 5. GSU designations based on a combination of pairwise FST values, neighbor-joining tree, 
and STRUCTURE results (colors relate to map in Fig. 6). 
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Fig. 6. Sampled Great Lakes spawning locations color-coded to its corresponding GSU (see Fig. 
5). Numbers correspond to sample locations described in Fig. 2. Black dots correspond to 
populations that do not consistently group with other sampled populations.  

 

 

In summary, based on the genetic data analyses, many distinct regions where natural 
populations remain (northern Lake Superior, southern Lake Superior, northern Lake 
Huron, Green Bay, and the St. Lawrence area) are strongly differentiated from each other 
and have been separated into six separate GSUs (Figs. 5, 6). The populations from 
locations distributed across the central region of the Great Lakes from the lower state of 
Michigan, Lake St. Clair, and the Niagara region appear less differentiated (despite their 
more dispersed distribution) and are grouped into a single GSU. Some populations 
(Sturgeon River, Kaministiquia River, Goulais River, Nottawasaga River, and Lake 
Champlain) could not be assigned to a GSU and are represented by black dots in Fig. 6. 
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Three guidelines for the identification of appropriate donor populations for stocking 
follow from these data: 

• Because most populations are genetically distinct from each other, stocking programs 
should exercise caution to avoid outbreeding and the disruption of remnant 
population structure. 

• Management actions within a lake basin (even within a GSU contained in a single 
lake basin) should not be considered in isolation from surrounding lake basins and 
surrounding GSUs. 

• Uncertainty remains about GSU designations. Not all populations and stocking sites 
are grouped within a GSU. When GSU designations remain uncertain, populations 
geographically closest to the stocking site can be a potential donor population. GSU 
designations should be updated when additional genetic data become available. 

 

STEP 2: IDENTIFICATION OF PRIORITY CONSERVATION 
POPULATIONS 

Action Item: Identify any priority conservation populations that are 
located within the relevant genetic stocking units. 

Purpose 

The purpose of this section is to identify those populations that should be given high 
priority for conservation; such populations should reproduce at sites where human 
activities are expected to have a limited effect upon the population. A population can be a 
priority conservation population if it meets any of the three criteria described in this 
section. Each GSU should contain at least one priority conservation population to ensure 
that its genetic diversity will likely be represented in the future. Some spawning 
populations may be a high priority for conservation from a genetic perspective because 
they contribute substantially to the overall genetic variability of lake sturgeon in the 
Great Lakes and represent populations whose genetic makeup may be relatively unaltered 
by human activities. A priority conservation population can be identified based on 
variables such as high genetic divergence, unique life-history characteristics, or being a 
natural, self-sustaining population. At locations where such populations exist, extra 
caution in identifying donor populations for stocking must be exercised, and culture and 
stocking methods that promote the imprinting of cultured fish should be used.  
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Background and Rationale  

Different methods that use both genetic and ecological data for prioritizing populations 
have been developed for species other than sturgeon. For example, Allendorf et al. (1997) 
prioritized Pacific salmon populations by first determining the extinction probability for a 
population. If a population had a relatively high extinction probability, the population 
was then ranked with a scoring system according to the genetic and ecological 
consequences of extinction using criteria such as genetic divergence and the status of 
nearby populations. However, while the objectivity of a scoring system is laudable, the 
ability to identify appropriate scores is questionable (Wainwright and Waples 1998). 
Perkins et al. (1993) used levels of genetic differentiation for the identification of heritage 
brook trout (Salvelinus fontinalis) populations that should be conservation priorities. Petit 
et al. (1998) proposed a method of prioritization based solely on genetic markers. Those 
authors evaluated a population’s contribution to the genetic variability of the species as a 
whole by examining among-population genetic divergence and within-population genetic 
diversity. Moritz (2002) stressed the importance of maintaining historically isolated 
lineages as well as varied landscapes with viable populations for preserving evolutionary 
potential. 

The criteria used for prioritizing sturgeon populations in these guidelines include not only 
genetic variables, but also include biological variables that may account for adaptive 
differences among populations and that integrate the prioritization approaches described 
above. Sole reliance on the use of neutral genetic markers for prioritization may 
underestimate the degree of adaptive divergence between populations (McKay and Latta 
2002). The criteria to be used for the identification of priority conservation populations 
are the amount of genetic differentiation, the presence of unusual life histories, and 
evidence of being close to a natural (unperturbed) state. 

Differences in allele frequencies between healthy populations indicate that gene flow is 
limited and that a potential exists for unique genetic adaptations to accumulate over time. 
Various statistical analyses can be used to determine the degree of genetic divergence 
such as FST, genetic distance measures, and factorial correspondence analysis. Using 
eight microsatellite loci, the average FST across all spawning populations is 0.08. 
Populations having an average FST value greater than 0.08 can be considered as having 
relatively high levels of genetic differentiation. However, high levels of differentiation 
should not be a result of isolation by artificial barriers. Those populations that have 
relatively high levels of natural genetic differentiation from other populations should be 
identified as priority conservation populations. Examples of populations that meet this 
criterion would be the Bad River (FST = 0.09), Kaministiquia River (FST = 0.09), and 
Black Sturgeon River (FST = 0.09), all of Lake Superior. 
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Life-history characteristics that relate to unusual migratory characteristics, spawning 
behavior, and age and growth patterns are examples of attributes that denote potential 
priority conversation populations. An example of an alternate life-history strategy is year-
round river residency. Most populations within the basin show a migratory life history, 
with fish leaving rivers as juveniles to feed and grow in the Great Lakes and adults 
returning to natal rivers to spawn. Other examples include the existence of a shoal- or 
reef-spawning population that completed its life history in a lake or bay, or a population 
with multiple spawning runs (e.g., early and late). Whether these behavioral differences 
are associated with inherited adaptive differences is uncertain. A conservative approach 
should assume some genetic basis exists for these life histories. Life-history traits used 
for the identification of priority conservation populations should not be the result of 
human-altered environments or human activities. For example, river residency that is the 
result of the presence of dams is not a life-history trait that should be given priority. The 
Kaministiquia River (Lake Superior) and the St. Clair River would be examples of 
populations that may have unusual life-history traits. Telemetry and capture data from the 
Kaministiqua River population suggest that most fish reside in the river all year (M. 
Friday, Ontario Ministry of Natural Resources, personal communication, 2008). Sturgeon 
spawning in the St. Clair River do so in deep water (>10-m deep), and a year-round river-
resident population exists at this location (Boase 2003; Thomas and Haas 2004). 

Populations that are freely moving (without being blocked by artificial barriers from 
using critical portions of their historical home range), have not been impacted by 
stocking, have retained sufficient genetic diversity, and are recruiting naturally are closest 
to a natural (unperturbed) state and should be priorities for conservation. These 
populations most likely represent closely the natural genetic diversity of lake sturgeon 
populations unaltered by human activities. Rivers that fit this criterion exist in each GSU. 
The Sturgeon River (Lake Superior) and the St. Clair River are two examples. 
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STEP 3: A STOCKING DECISION TREE 

Purpose 

This step helps with decision making about whether to reintroduce or supplement a lake 
sturgeon population at a selected location. Reintroduction is defined as the establishment 
of lake sturgeon at a spawning location where it is absent. Supplementation is defined as 
stocking at a location where a sturgeon population currently exists but where the 
population is below a desired abundance. This step also guides the selection of donor 
stocks and the implementation of stocking or supplementation strategies. Donor stocks 
supply gametes for propagation of lake sturgeon in hatcheries. The decisions made at this 
step are guided by genetic considerations unique to the site targeted for reintroduction or 
to the population intended for supplementation. As the decision tree is being used, the 
reasons used to make decisions at each step should be documented to allow for internal 
and external review. 

Stocking Decision Tree 

Decision 1 

A. If the goal of stocking is to have a self-sustaining population, were or are the 
impediments that contributed to the original population’s extinction, decline, or 
lack of recovery remedied, or planned to be remedied, by the time the stocked fish 
return to spawn?  

 YES: Go to Decision 2. 

 NO:
  

Stocking is not recommended. Research and management should focus on 
remedying the impediments limiting lake sturgeon sustainability prior to 
reintroduction. Management should develop a plan with measures that 
have the potential to remedy the impediments that prevent sustainability. 
At this point, Step 3 of the guidelines has been completed, and Step 4 
should not be started until the impediments at the site are remedied or will 
be remedied by actions under way. 

B. If the goal of stocking is not to have a self-sustaining population, go to Decision 2. 

The purpose of Decision 1 is to ensure that suitable conditions exist to support a self-
sustaining population. Stocking will not result in lake sturgeon recovery if the 
fundamental reasons for the population’s decline or extinction were or are not addressed. 
These impediments should be examined before stocking. This decision emphasizes the 
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importance of evaluating all biological factors important to lake sturgeon recovery, not 
just those associated with stocking. For supplementation, addressing Decision 1 may 
result in the natural recovery of the population without a need for stocking. 

Decision 2 

A. Is there a high likelihood that a lake sturgeon population exists at the selected site? 

 YES: Go to Decision 3. 

 NO: Go to Decision 5. 

B. If the existence of a population is unknown, Step 3 of the guidelines has been 
completed. Assessments should be conducted to determine the status of the 
population, including abundance, reproductive success, genetic diversity, and 
threats to viability, and then the previous decisions should be repeated. 

The purpose of Decision 2 is to determine whether stocking will affect the population that 
remains at the proposed stocking site. Future decisions will aim at trying to minimize 
impacts to the existing population at the site. 

Decision 3 

A. Is a high risk of extinction predicted for this population? High risk of extinction is 
defined as a >50% reduction in population size has occurred over the last 75 years, 
even though the causes of reduction have ceased, or a >30% reduction in population 
size has occurred over the last 75 years, even though the causes of reduction have 
remained or are unknown. 

 YES: Begin supplementation with individuals from this population using the 
recommendations in Step 4. Supplementation also may be conducted with 
individuals from populations within the GSU if the existing population is 
too small or has low genetic diversity. Step 3 of the guidelines has now 
been completed; go to Step 4. 

 NO:
  

Go to Decision 4. The data suggest the population likely will sustain itself, 
although perhaps at levels below management objectives.  

B. If data are insufficient to predict the risk of extinction, Step 3 of the guidelines has 
been completed. Conduct assessments to determine the status of the population 
including abundance, reproductive success, genetic diversity, and threats to 
viability and then repeat the previous decisions. 
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The purpose of Decision 3 is to determine the viability of the existing population in order 
to assess whether supplementation is critical to that population’s sustainability. If a 
population is at a high risk of extinction, then supplementation may be implemented to 
prevent extirpation of the population. Ongoing research may provide insight into 
identifying populations that are at high risk of extinction (Schueller and Hayes, 
unpublished data). If a high risk of extinction does not exist, supplementation may meet 
other goals, such as restoring fish-community function, establishing a recreational 
fishery, providing for tribal ceremonies/subsistence, and/or controlling invasive species. 
Criteria for reductions in population size are based on the International Union for 
Conservation of Nature and Natural Resources criteria for vulnerable taxa (International 
Union for Conservation of Nature and Natural Resources 2001).  

Decision 4 

Was this population identified as a priority conservation population in Step 2? 

YES: Supplementation should not be conducted at this site, as the genetic importance 
of this stock could be compromised. Step 3 of the guidelines has been 
completed; do not proceed to Step 4. 

NO:
  

Supplementation may be implemented as per Step 4. Supplementation should 
not use individuals from other populations. Step 3 has been completed; proceed 
to Step 4. 

The purpose of Decision 4 is to preserve the genetic diversity of priority conservation 
populations. If the population has been identified as a priority conservation population, 
supplementation could compromise its genetic integrity by decreasing genetic diversity, 
increasing relatedness, selecting for traits that are advantageous in captivity, and 
decreasing effective population size. The risks of stocking outweigh the benefits because 
the population is not likely to become extinct. If the population is not a priority 
conservation population, supplementation may be used if the population is not meeting 
fish-community and/or management objectives. 
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Decision 5 

Does at least one population within the GSU identified in Step 1 have sufficient numbers 
(so that gamete collection will not affect recruitment and diversity in the donor 
population), sufficient genetic diversity (as measured by average number of alleles and 
average heterozygosity), and logistical feasibility to serve as a donor stock? 

YES: Go to Decision 6. 

NO:
  

Reintroduction is not recommended at this site. An appropriate donor population 
is not available. Management should focus on conservation of existing remnant 
populations until a potential donor becomes available. Step 3 of the guidelines 
has been completed; do not proceed to Step 4. 

The purpose of Decision 5 is to determine whether a suitable donor population exists. A 
donor population should be from the same GSU to reduce the risk of outbreeding 
depression. The donor population should also have sufficient numbers of females and 
males to provide an adequate representation of genetic diversity and to reduce the 
relatedness of offspring. Sufficient genetic diversity in the donor population is important. 
Use of a population that is inbred or has experienced a genetic bottleneck could result in 
an inbred reintroduced population that lacks evolutionary potential. Logistical feasibility 
takes into account factors such as ease of donor capture, accessibility of spawning site, 
and cost. Similar habitat characteristics at the reintroduction site and at the site of the 
donor population also may be beneficial. If no donor stock exists within the GSU 
identified in Step 1, reintroduction is not recommended at this site because the threat to 
natural populations within the GSU outweighs the benefits of reintroduction. 

Decision 6 

Is the proposed stocking site geographically isolated from all priority conservation 
populations identified in Step 2 or has the risk of reintroduced individuals straying to 
these sites been removed? 

YES: Stocking at the proposed site can occur using the selected donor stock(s). Step 3 
of the guidelines has been completed; proceed to Step 4. 

NO:
  

If an appropriate donor stock(s) has been selected for the proposed site, stocking 
can proceed providing propagation techniques ensure long-term fidelity of the 
stocked fish to the proposed site (see rationale below). Only gametes or 
fertilized eggs from the donor population should be used; drifting larvae from 
another river should not be used (see rationale below). Step 3 of the guidelines 
has been completed; proceed to Step 4. 
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The purpose of Decision 6 is to evaluate the potential impact of stocking on priority 
conservation populations. If stocked individuals stray and reproduce at sites containing a 
priority conservation population, the genetic integrity of that population could be 
compromised. A very conservative approach in donor selection and breeding-plan 
implementation needs to be adopted. Some of the GSUs cover large geographic ranges 
and may have barriers that impede straying, particularly in an upstream direction. In these 
instances, the threat of individuals straying to priority conservation populations is 
reduced. Examples of locations with barriers include sites below Niagara Falls and sites 
below the Moses Saunders Dam on the St. Lawrence River (Fig. 2). Wherever a potential 
exists for stocked fish to stray into the spawning sites used by priority conservation 
populations, propagation techniques that promote imprinting should be used. A current 
example is streamside rearing using gametes or fertilized eggs from the donor population. 
Due to the uncertainty of the life stage at which imprinting occurs and to the potential for 
reduced genetic diversity due to relatedness of collected individuals, the collection and 
use of drifting larvae from the donor population is not recommended.  

STEP 4. STOCKING PROGRAM DESIGN AND 
IMPLEMENTATION 

Purpose 

The purpose of this section is to describe breeding guidelines that will reduce the genetic 
risks associated with propagation after the use of Steps 1-3 has determined that stocking 
should proceed. Steps 1-3 evaluated the genetic risks of reintroduction, introduction, or 
supplementation at the selected site and identified an appropriate donor population that 
reduces the risk of outbreeding depression. Based upon the results of Steps 1-3, including 
the documentation developed for each decision and the recommendations derived in this 
step, a management agency should be able to write a proposal for the artificial 
propagation needed for reintroduction, introduction, or supplementation and seek review 
from the lake committee with responsibility for that Great Lake (see 
http://www.glfc.org/lakecom/). Sections of these guidelines may be used within 
management plans, as appropriate. 
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Section 1. Collection Targets and Mating Techniques 

Gamete Collection 

Gamete collection is often the most appropriate strategy for reintroduction into waters 
where sturgeon are extirpated. Gamete collection may also be suitable when 
supplementing an existing population, assuming adequate numbers of adult donors are 
available. To proceed, use the following recommendations: 

1. Gamete collection should target a total of 250 females and 250-1,250 males over the 
lifetime of the stocking (resulting in an Ne > 500 and average yearly Ne ≥ 20 over a 
25-year period). See Table 4 for the appropriate number of matings to achieve this 
yearly effective population size. In locations where this number is not feasible due to 
limited donor population size, minimum acceptable numbers as low as 100 females 
and 100 males summed over a period of at least 25 years can be used (resulting in an 
Ne = 200 and average yearly Ne ≥ 8). An estimate of the number of eggs needed from 
each female can be determined a priori based on expected survival rates during 
incubation and rearing so that sufficient progeny are available to meet stocking 
targets (see Section 3) without encumbering propagation facilities with an unusable 
excess. Stocking will likely need to occur over many years to obtain the target 
number of parents and to achieve an adequate age structure in the established 
population. 

2. Adults should be captured throughout the spawning season from the donor spawning 
population(s) and at several locations within the spawning site to maximize the 
diversity in the genetic and the reproductive-strategy characteristics represented in 
collected gametes. 

3. When available, use up to five males per female. Divide the number of males by the 
number of females to determine the number of males to be mated with each female. 
Then divide the eggs from each female into equal allotments corresponding to the 
number of males with which the female will be mated. Gametes should be kept 
separate by family (male-female pair) so that the number of progeny from each 
family can be equalized during the rearing process (see Section 2). Do not pool 
sperm or reuse males. 

4. Mark all parents (PIT tags suggested) so that their use in propagation will be known 
if they are recaptured in future collections, and collect tissue samples for genetic 
analysis to establish a baseline of parental genotypes. This record keeping is critical 
for long-term evaluation and success. 
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Table 4. The number of male and female parents required to achieve annual effective population 
sizes of at least 8. 

 Number 
of 

parents 

 
 

3 

 
 

4 

 
 

5 

 
 

6 

Female 
 

7 

 
 

8 

 
 

9 

 
 

10 

 
 

11 

 
 

12 
4  8.0   
5  8.9 10.0   
6 8.0 9.6 10.9 12.0   
7 8.4 10.2 11.7 12.9 14.0   
8 8.7 10.7 12.3 13.7 14.9 16.0   
9 9.0 11.1 12.9 14.4 15.7 16.9 18.0   

10 9.2 11.4 13.3 15.0 16.5 17.8 19.0 20.0  

11 9.4 11.7 13.8 15.5 17.1 18.5 19.8 20.6 22.0 

12 9.5 12.0 14.1 16.0 17.7 19.1 20.6 21.8 23.0 24.0
13 9.8 12.2 14.4 16.4 18.2 19.8 21.3 22.6 23.8 25.0

14 9.9 12.4 14.7 16.8 18.7 20.4 21.9 23.3 24.6 25.8
15 10.0 12.6 15.0 17.1 19.1 20.9 22.5 24.0 25.4 26.7
16 10.1 12.8 15.2 17.5 19.5 21.3 23.0 24.6 26.1 27.4
17 10.2 13.0 15.5 17.7 19.8 21.8 23.5 25.2 26.7 28.1

18 10.3 13.1 15.7 18.0 20.2 22.2 24.0 25.7 27.3 28.8
19 10.4 13.2 15.8 18.2 20.5 22.5 24.4 26.2 27.9 29.4

M
al

e 

20 10.4 13.3 16.0 18.5 20.7 22.9 24.8 26.7 28.4 30.0

 

Note: Effective population size is calculated using the equation Ne = 4NfNm / (Nf + Nm). This 
equation does not take into account variation in family size. Therefore, family sizes need to be 
relatively equal. Values inside the bold line correspond to recommended mating combinations 
that achieve the target annual Ne of 20. All other values shown correspond to mating 
combinations that achieve minimum annual Ne of 8 and should only be used for those donor 
populations of insufficient size to support target numbers. Unlisted values are below the 
minimum yearly number or require the reuse of males, which is not recommended. Table is 
modified from the Breeding and Stocking Protocol for Cultured Atlantic Sturgeon (Pierre et al. 
1996). 
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Fertilized Egg or Larvae Collection 

For supplementation of an existing population, the collection of larvae or fertilized eggs 
may be very suitable because it has the potential to gather representative fish from more 
parents than may be feasible with direct collection of gametes (Crossman 2008). When 
access to, or availability of, adults of reproductive age from the donor population(s) is 
limited or difficult, collecting deposited eggs or drifting larvae may be the only option. 
Proceed using the following recommendations: 

1. As with direct gamete collection, collected fertilized eggs or drifting larvae should 
come from the natural spawning of at least 250 females and 250-1,250 males over 
the lifetime of the stocking. This collection can be evaluated during the course of the 
supplementation effort through genetic analysis of reared fish.  

2. Because fertilized eggs and drifting larvae collected from the wild are usually 
contributing to natural production, limit collections to 10% or less of available 
drifting larvae or fertilized eggs. Collect eggs and/or larvae from different locations 
within the spawning site and at different times throughout the spawning or larval 
drift period. 

3. Larval collection for transfer to other river systems is not appropriate for 
reintroduction at sites not completely isolated from priority conservation populations 
(see Step 3). Due to uncertainty about the mechanism of imprinting in lake sturgeon, 
the risk of outbreeding depression resulting from straying to these populations is 
considered too great. 

Individual Transfers 

Where donor populations exist upstream of a migration barrier within targeted 
rehabilitation waters (within a river system), downstream transfers of any life stage, 
including adults, is a viable and preferable alternative to stocking artificially reared fish. 
Such transferred fish at maturity should home to the target waters. The target number of 
transfers should be 250 females and 250-1,250 males of diverse ages. This number can be 
accumulated over an extended time period (e.g., over 25 years). If the donor population is 
limiting, a transfer of 4 females and at least 4 males each year would meet the minimum 
requirements. Adult transfers should not exceed 5% of the donor adult stock in any year, 
and between-river transfers should not be conducted (see below). 
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Rationale for Collection Targets and Mating Techniques 

Lake sturgeon gamete collection, propagation, and stocking require a sustained, long-
term effort if a population is to be restored or enhanced in a genetically conservative way. 
The intermittent spawning and late sexual maturity of lake sturgeon require a long-term 
commitment. Due to the protracted maturity schedule for lake sturgeon, gametes can be 
collected over one generation (25 years) to meet the overall target number.  

A re-established population with a minimum effective population size of 500 is 
recommended (Lande 1988). This number will ensure that the long-term evolutionary 
potential and a sufficient level of genetic diversity are maintained in the stocked 
population. In donor populations that have a population size that cannot support the 
recommended number, a minimum of 200 should be sufficient (Allendorf and Ryman 
1987). This minimum number will increase the likelihood of sampling low-frequency 
alleles and will not disqualify potential donor populations that would be optimal in 
reducing the risk of outbreeding depression. Sampling donor populations at this scale has 
been demonstrated to maintain the allele frequencies observed in the donor population 
(Page et al. 2005).  

An effective population size per year of 20 (Ne = 20) is recommended for donor 
populations of large size (e.g., Wolf and St. Lawrence Rivers). This yearly target will 
ensure that the overall minimum number (Ne = 500) will be met within a 25-year period. 
If the yearly effective population size exceeds 20, the overall target will be met sooner. If 
the donor population cannot support that number, a minimum effective population size 
per year equal to 8 (Ne = 8) for 25 years is recommended. For the white sturgeon 
(Acipenser transmontanus), 500 parents over 50 years (10 parents each year; yearly Ne = 
10) were recommended (Pollard 2002); for the Atlantic sturgeon (Acipenser oxyrhynchus 
oxyrhynchus), 100 parents over 10+ years (yearly Ne = 6) (Pierre et al. 1996); and for the 
paddlefish (Polyodon spathula) 50 parents over 5 years (yearly Ne = 10) (MICRA 
Paddlefish Sturgeon Committee 1998),.The Kootenai River white sturgeon conservation 
aquaculture program recommends an annual minimum target of Ne = 10, which has been 
surpassed in most of the recent years the program has operated (Kootenai Tribe of Idaho 
2007). The recommended mating scheme is a partial factorial design where females are 
mated with subsets of the available males. This mating scheme increases genetic diversity 
and increases Ne by reducing variance in family size (Fiumera et al. 2004). Simulation 
studies have demonstrated that a complete factorial design (a portion of each female’s 
eggs are fertilized by each male) maximizes Ne compared with a monogamous mating 
design where the eggs from each female are mated with a single male (Fiumera et al. 
2004). Implementation of a complete factorial design may be necessary when variance in 
family size is large. However, possible negative consequences of a complete factorial 
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design include an increase in relatedness of offspring (Miller and Kapuscinski 2003). The 
recommended mating scheme offers an increase in genetic diversity and Ne while 
decreasing the relatedness among offspring. Equalization of family sizes further increases 
the Ne, resulting in an Ne similar to the size achieved through a complete factorial design. 
Sperm should not be pooled; otherwise, sperm competition may result in the over-
representation of a subset of males (Campton 2004).  

When collecting fertilized eggs or drifting larvae from wild populations, the number 
collected should not exceed that required to meet the objectives of supplementation, and 
their removal should not compromise the productivity of the donor population. In most 
situations, the recommendation is to collect up to only 10% of the available production. 
The recommended numbers of transferred adults (<5% of adult donor stock) were based 
on mortality rates that could be sustained without having a detrimental effect upon the 
donor population. 
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Section 2. Rearing Techniques 

1. Rear fish in a manner that promotes the imprinting and adaptation of stocked fish to 
the receiving waters. The use of streamside rearing is currently being and is likely to 
meet this objective (Holtgren et al. 2007; Crossman 2008). Other techniques offering 
the same advantages should be considered as they are developed. Rearing techniques 
should also address the trade-offs between artificial-rearing time, domestication 
selection, release size, and survival. 

2. Maintain equal familial representation (+5% of the established stocking number) 
during the rearing process, at release, and across the entire stocking period (25 
years). Excess offspring should not be released into open waters but may be used for 
captive research or provided to private aquaculture, zoos, or aquaria. 

3. Employ the best rearing practices, which seek to produce a good-quality fish reared 
under conditions that mimic, to the greatest degree possible, the average natural 
conditions at the site where sturgeon will be introduced. These practices will 
minimize the probability of domestication selection. 

4. Monitor the health of propagated sturgeon as well as sturgeon in the donor 
population. 

Rationale 

Rearing techniques will depend upon the intent of the stocking activity (e.g., to re-
establish an extirpated population or to rehabilitate an existing but depressed population 
through supplementation). Efforts should be made to facilitate the imprinting of reared 
sturgeon to their receiving waters. Straying of only a few reared fish of one genetic 
source into waters containing a genetically different population could result, over time, in 
the loss of the genetic identity of that population. Streamside rearing is one method 
currently being tested that is expected to maximize the likelihood of imprinting and thus 
minimize the risk of straying of stocked fish (Holtgren et al. 2007). Other viable and 
existing techniques should be considered and investigated. Streamside rearing is defined 
here as a technique of rearing gametes and fish in ambient receiving waters appropriate 
for that life stage (eggs and/or larvae through stocked juveniles). This technique will 
likely require locating rearing facilities at remote field locations, and will add logistics 
and expense to artificial-production operations. Other techniques offering the same 
advantages should be considered as they are developed and recommended. Rearing 
techniques should also address the tradeoffs between artificial rearing time, 
domestication selection, release size, and survival. Directly stocking eggs or very early-
stage larvae could also reduce the risk of straying. 
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Rearing practices should be adopted that will maintain equal family representation. Equal 
representation can occur through separate rearing or marking individuals with unique 
marks by family. If propagation logistics require combining families during the rearing 
process, this action should be delayed until after significant periods of mortality have 
passed. Families could be combined incrementally as space dictates. When combining 
families is deemed necessary, family contributions should be equalized. By equalizing 
family sizes, the ratio of the effective population size to the census population size is 
closer to one, thereby minimizing the loss of genetic diversity and avoiding the Ryman-
Laikre effect. 

The numbers of gametes to rear per family should be determined a priori based on 
expected survival rates during incubation and rearing so that the target stocking number 
is attained with all families contributing equally throughout the entire period of stocking 
(25 years). However, equalization of family sizes (+5%) at stocking does not necessitate 
reduction of all families to the size of the smallest annual production group. Doing so 
could unduly compromise the intended demographic benefits of the effort. Instead, 
offspring from those families that are below the target number will simply be under-
represented and will likely necessitate the rearing of additional families in future years to 
meet propagation targets. Further, the numbers stocked from other families should not be 
increased to make up for this shortfall but should be kept as targeted originally. 

During captive rearing, water-quality conditions including temperature, dissolved 
oxygen, dissolved nitrogen, turbidity, and other important parameters should mimic 
ambient conditions in the receiving waters and meet fish-culture and fish-health 
standards. Cultured fish should be monitored for health to keep them in good condition, 
free of debilitating and/or lethal diseases, and free of chronic stress symptoms to prevent 
introduction and dissemination of communicable diseases. 
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Section 3. Stocking Numbers  

1. Determine the numbers of each life stage to be stocked based on habitat availability 
and expected survival rates for the stocking site, accounting for the population size 
and recruitment from an existing remnant population (if present). Table 5 serves as a 
guide for the development of stocking targets based on the life stage to be stocked. 
Stocking numbers will vary, depending on the target adult population size. 

2. Determine the number of fertilized eggs and larvae based on habitat availability and 
expected survival rates for the stocking site (Table 5). Assuming a 1.0% larval-to-
fingerling-stage survival rate, stocking rates for larvae might typically range between 
25,000 and 100,000 individuals. The number of eggs to be stocked will depend on 
the number that can be collected from female donors and fertilized by males. As 
many naturally fertilized eggs may be stocked as can be collected. The collections of 
wild fertilized eggs should not exceed a level that negatively affects recruitment to 
the donor population. Lacking site-specific data, 10% is a suggested maximum 
collection level. 

3. Determine the number of juvenile or adult transfers based on habitat availability 
with a minimum equal to the number of donors specified in Section 1 (minimum of 
250 females and 250-1,250 males over a period of at least 25 years, or if abundance 
in the donor population is limiting, then a yearly Ne > 8). 
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Table 5. Sample annual stocking numbers of fingerling- and yearling-size fish necessary to 
achieve the recommended adult population based on a range of possible annual survival rates 
(assumes 25 years of stocking and a target adult population of 750 fish, ages 15-40). 

Survival rate (%)  Number stocked 
Fingerling Yearling Adult  Fingerling Yearling 

10 50 90  7,000  700  
  95  2,100  210  
  98  975  98  

10 75 90  4,700  470  
  95  1,400  140  
  98  650  65  

10 90 90  3,900  390  
  95  1,170  117  
  98  540  54  

25 50 90  2,800  700  
  95  840  210  
  98  390  98  

25 75 90  1,880  470  
  95  560  140  
  98  260  65  

25 90 90  1,560  390  
  95  470  117  
  98  220  54  

50 50 90  1,400  700  
  95  420  210  
  98  195  98  

50 75 90  940  470  
  95  280  140  
  98  130  65  

50 90 90  780  390  
  95  235  117  
  98  110  54  
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Rationale  

The goal is to establish a founding population of at least 750 sexually mature lake 
sturgeon in each site targeted for rehabilitation. This number was selected because it 
represents the minimum number thought to be present in Great Lakes populations that are 
considered to be either stable or increasing in abundance (Sturgeon and Bad Rivers in 
Lake Superior and the Lower Menominee River in Green Bay). However, a target adult 
population size may vary depending on management goals and habitat availability. 
Stocking numbers will then need to be adjusted accordingly. 

There are several ways to calculate the number of lake sturgeon to stock in a particular 
system to achieve this minimum population goal. The first way involves estimating the 
number of larvae, fingerlings, or yearlings that are produced by known natural 
populations having this abundance of mature fish. These numbers can then be used to set 
stocking targets in similar systems. Examples are limited, but for the Peshtigo River 
(Lake Michigan), larval production was estimated at approximately 6,200-23,000 and 
fingerling production at 108-1,260 in 2002-2007 (Benson 2004; Caroffino 2009).  

The second way involves estimating and calculating survival rates at different life stages 
can be estimated and calculated. To meet the population abundance target of 750 sexually 
mature lake sturgeon per population after 25 years of stocking, the number of fish to 
stock at different life stages can be calculated using survival-rate estimates. However, 
survival rates may vary considerably among years and rivers or populations. For wild 
lake sturgeon in the Peshtigo River (Lake Michigan), survival from the larval to the fall-
fingerling stage appeared to range from 1-10% (Benson 2004; Caroffino 2009). In Green 
Bay, total annual mortality for lake sturgeon ages 9-60 ranged from 5.1-7.0%, although 
this estimate was considered a maximum given an apparent increase in recruitment over 
the study (Elliott and Gunderman 2008). Total annual mortality for Manistee River fish 
ages 10-50 was estimated at 4.5% (Lallaman et al. 2008). Baker and Borgeson (1999) 
reported a 5% total annual mortality rate for adult lake sturgeon in Black Lake 
(Michigan), and Priegel and Wirth (1975) reported a total annual mortality of 5.4% for 
the Lake Winnebago population. Annual total mortality estimates for the Lake 
Winnebago population have ranged from 9.8-22.1% since 1953, with exploitation 
amounting to 1.0-11.5% (Bruch 1999). Total annual mortality for lake sturgeon in the St. 
Clair system was estimated at 9.0% (Thomas and Haas 2004). Crossman et al. (2009) 
estimated overwinter survival of age-0 lake sturgeon juveniles to be 40%. Survival of 
hatchery-reared white sturgeon in the Kootenai River was estimated at 64% during the 
year after release and at approximately 90% during all subsequent years (Kootenai Tribe 
of Idaho 2004). The amount of larval production for native populations and their life-
stage survival rates should be priority research goals. 
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Survival-rate assumptions, particularly those for adult fish, greatly affect the number of 
fish needed for stocking. Table 5 provides examples of stocking rates to guide 
establishment of a population of 750 mature adults (ages 15-40) given three levels of 
assumed survival for three life stages. For example, assuming annual survival rates of 
25% for fingerlings, 75% for yearlings, and 90% for adults, some 1,880 lake sturgeon 
fingerlings would need to be stocked per year for 25 years to attain an adult population of 
750 fish. Increasing the assumed survival of adult fish by 5% (to 95%) reduces the 
number of fingerlings needed to 560 per year. Survival rates and habitat availability for 
all life stages will need to be determined and evaluated continually to maintain 
appropriate stocking rates.  

Section 4. Release Techniques 

1. Release propagated lake sturgeon at the earliest life stage possible, considering the 
trade-offs among survival, domestication or other culture effects, imprinting success, 
and genetic and demographic benefits and risks. Existing culture programs have 
found that rearing lake sturgeon to an age/size of 3-5 months and 4-8 inches is a 
reasonable approach for most target waters. 

2. Establish a method to reliably mark or identify stocked fish after their release. If 
stocked fish are large enough, permanently mark all of them so that, at a minimum, 
stocking location and year-class can be determined for recaptured fish. Ideally, all 
stocked fish would be marked with PIT tags or other individual-specific internal 
tags. Using coded wire tags injected at specific locations with or without fin clips 
also may be useful. If size at stocking precludes reliable marking of individuals, 
consider the use of permanent mass-marking techniques and retain samples to 
genetically characterize stocked fish. 

3. When families have been combined prior to stocking or when wild larvae or 
fertilized eggs have been collected and reared, collect tissue samples from all fish (or 
a sufficient sub-sample) to characterize their genetic lineage. If stocked fish are too 
small for non-destructive sampling, a subset should be sacrificed to provide the 
necessary tissue for genetic analysis. 

4. Release lake sturgeon in locations where habitat is suitable and typical for the life 
stage(s) being stocked. 

5. Use release techniques that increase chances for survival, such as acclimation pens, 
nighttime releases, and multiple releases over time. 
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Rationale 

Although releasing fish at the earliest possible life stage will maximize the likelihood of 
imprinting, fish may be held in streamside or hatchery facilities through much of the first 
growing season to reduce exposure to early mortality sources, such as predation, and to 
facilitate tagging or marking of individuals prior to release. To maximize survival and 
facilitate imprinting, fish should be released into receiving waters at locations where wild 
fish are known or would be expected to reside at that period in their life history.  

Marking should identify individuals and/or individual families of origin, stocking 
location, experimental unit, date of release, and year-class. A marking technique should 
be used that can be interpreted universally. PIT tags afford this level of discrimination at 
a relatively small cost compared to the overall cost of implementing rehabilitation 
stocking. The potential benefits that will be afforded from evaluation justify the initial 
expense of tagging. Genetic analysis can also provide some of the needed information, 
but costs and logistics are likely to be greater. To evaluate final parental contribution and 
to facilitate future evaluation of the origin of returning adult fish, tissues should be 
collected for genetic analysis from representative samples of fingerlings and yearlings 
before they are stocked. Sampling is especially important for lots originating from wild 
eggs or drift larvae and for families that have been commingled prior to stocking.  
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Section 5. Evaluation 

1. Lake sturgeon management plans that involve stocking projects should contain 
detailed evaluation criteria that are explicitly linked to management objectives. 
Evaluation will provide the opportunity to learn over the considerable time periods 
of stocking and to adapt to unforeseen problems effectively. Benchmarks of stocking 
success should be developed for various life stages, behaviors, and time periods 
(e.g., every five years). Assessment and monitoring need to be carried out to gauge 
progress toward benchmarks. A commitment to evaluation is essential if a stocking 
program is to contribute new information and be adaptive. 

2. The number and sex of donors should be recorded each year. If the number of 
donors falls short of the yearly target (see Section 1) for five consecutive years, the 
goal of an overall minimum contribution from at least 250 parents likely will not be 
met. A different donor population should be identified or rehabilitation efforts 
should be reevaluated. 

3. Ten years after the first stocking event, rigorous evaluation of spawner returns 
should begin. This evaluation should include monitoring of neighboring rivers and 
other populations where stocked sturgeon might stray. If sexually mature strays are 
identified, reintroduction/supplementation should be modified to increase the 
likelihood of imprinting to the stocking site. If sufficient (target) numbers of ripe 
males are not detected in the stocked river from year 10 to year 20, the rationale for 
stocking should be reassessed, and adjustments should be made. 

4. Twenty years after the first stocking event, rigorous evaluations of recruitment 
should begin (if natural recruitment was a stocking goal). If successful reproduction 
and recruitment are not detected in the target river from year 25 to year 30, or soon 
after mature females are detected on the spawning grounds, the reasons for failure 
should be identified, and adjustments should be made. 

Rationale 

Due to the long-term commitment necessary for lake sturgeon stocking (up to one 
generation or 25 years), an opportunity exists to learn from stocking and to make 
modifications while the program is being implemented. The cost and effort required for 
effective stocking makes the creation of a thorough evaluation program a good 
investment. Defining clear objectives or criteria for the determination of success or 
failure reduces subjectivity in determining whether management actions need to be 
altered. 
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