Current Status of Preyfish in Lake Michigan

Dave Warner
Bo Bunnell
Chuck Madenjian
Randy Claramunt
Dale Hanson
Kevin Donner
Introduction

• Lake Michigan ecosystem continues to change and suffer from degradation
• Invasives have exerted major influence
• Chlorophyll a, primary production have decreased
• Key native species gone or nearly gone
 – Diporeia sp., cisco, kiyi, emerald shiner
• Preyfish well below FCO
Preyfish – an Overview

- Important to economically/ecologically valuable fish
 - Chinook heavily reliant on alewife
 - Lake trout reliant on alewife, bloater, sculpins
 - Many species utilizing goby

- Important for food web
 - Conduit for energy/nutrients between benthic and pelagic zones
 - Link between zooplankton and piscivores
 - Can influence structure of zooplankton communities
Outline

• Introduction

• Survey methodology

• Temporal and spatial patterns in fish species
 – Species common to lakewide surveys
 – Benthic fish from bottom trawl

• Lakewide survey context

• Conclusions
<table>
<thead>
<tr>
<th></th>
<th>Bottom trawl survey</th>
<th>Acoustic/mid-water trawl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time of day</td>
<td>Day</td>
<td>Night</td>
</tr>
<tr>
<td># trawls</td>
<td>~69</td>
<td>~68</td>
</tr>
<tr>
<td>Water column sampled</td>
<td>Bottom ~1.4 m</td>
<td>From 1 m off bottom to ~2 m below the vessel</td>
</tr>
<tr>
<td>Bathymetry sampled</td>
<td>9-110 m</td>
<td>6-240 m</td>
</tr>
<tr>
<td>Common species</td>
<td>Alewife, Bloater, Rainbow Smelt</td>
<td></td>
</tr>
<tr>
<td>Unique species</td>
<td>Gobies, sculpins, perch, burbot</td>
<td>Cisco, emerald shiner</td>
</tr>
</tbody>
</table>
Acoustic Density of Alewife

- **Adult Alewife**
 - Biomass density (kg/ha)

- **YOY Alewife**
 - Numeric density (number/ha)
Bottom Trawl Density of Alewife

![Graphs showing the biomass and numeric density of adult and YOY alewife over the years from 1970 to 2015. The graphs display fluctuations in density with error bars indicating variability.]
YAO Alewife Distribution, 2016

Fish per hectare

Acoustic
- 0
- 1 - 426
- 427 - 1002
- 1003 - 1824
- 1825 - 3514

Bottom trawl
- 0
- 1 - 3
- 4 - 21
- 22
- 23 - 44
YOY Alewife Distribution, 2016

Fish per hectare
- Acoustic
 - 0 - 640
 - 641 - 1802
 - 1803 - 3754
 - 3755 - 6636
 - 6637 - 18680
- smllalenperha2
 - 0
 - 1 - 29
 - 30 - 52
 - 53 - 648
Change in YAO Alewife Distribution

2013 large alewife

2014 large alewife

2015 large alewife

2016 large alewife

fish/ha

0

> 0

0

0

> 0

Latitude

Longitude

Latitude

Longitude

Latitude

Longitude

Latitude

Longitude

Latitude

Longitude

Latitude

Longitude
Change in YAO Alewife Distribution

![Graph showing the distribution of YAO Alewife over different years with error bars indicating variability.](image-url)
Acoustic Density of Rainbow Smelt

adult rainbow smelt

YOY rainbow smelt
Bottom Trawl Density of Rainbow Smelt

a) Adult rainbow smelt

b) Age-0 rainbow smelt
Large Rainbow Smelt Distribution, 2016

Fish per hectare
- **Acoustic**
 - 0 - 151
 - 152 - 664
 - 665 - 1366
 - 1367 - 2287
 - 2288 - 3631
- **Bottom trawl**
 - 0
 - 1 - 11
 - 12 - 28
 - 29 - 68
 - 69 - 139
Small Rainbow Smelt Distribution, 2016

Fish per hectare

Acoustic
- 0 - 103
- 104 - 390
- 391 - 876
- 877 - 1407
- 1408 - 3054

Bottom trawl
- 0
- 1 - 11
- 12 - 28
- 29 - 68
- 69 - 139
Acoustic Density of Bloater

Adult Bloater

YOY Bloater
Bottom Trawl Density of Bloater

a) Adult bloater

b) Age-0 bloater
Large Bloater Distribution, 2016

Fish per hectare
- **Acoustic**
 - 0
 - 1 - 57
 - 58 - 135
 - 136 - 241
 - 242 - 442
- **Bottom trawl**
 - 0
 - 1 - 55
 - 56 - 209
 - 210 - 480
 - 481 - 1705
Bottom Trawl Density of Sculpins

a) Deepwater sculpin

b) Slimy sculpin
Density of Round Gobies

a) Round goby

b) Ninespine stickleback
Outline

• Introduction
• Survey methodology
• Temporal and spatial patterns in fish species
 – Species common to lakewide surveys
 – Benthic fish from bottom trawl
• Lakewide survey context
• Conclusions
Are survey results always identical?

- No.
- Need both surveys to develop an adequate picture
- Both surveys are used in stock assessment modeling
Comparison of Acoustic and Bottom Trawl Biomass Density, 2014-2016
Survey Results Context

• Are species results always identical?
 • No, but this is expected

• Do surveys tell us the same thing in general?
 • Yes – prey fish biomass is at or near all time low
Total Biomass Density, Acoustic Survey
Total Biomass Density, Bottom Trawl Survey
2016 Alewife Age Composition from Surveys

Acoustic

Bottom trawl
Outline

• Introduction
• Survey methodology
• Temporal and spatial patterns in fish species
 – Species common to lakewide surveys
 – Benthic fish from bottom trawl
• Lakewide survey context
• Conclusions
Conclusions

• Lakewide surveys indicate low biomass of prey fish
 – Bottom trawl all-time low
 – Acoustic 4th lowest

• Recent period (2010-2016) marked by single strong year class, six relatively weak ones

• Adult alewife have become more coastal