The Lake Trout Rehabilitation Model:

Program Documentation
by

Carl J. Walters
Lawrence D. Jacobson
and

George R. Spangler

Great Lakes Fishery Commission

The Great Lakes Fishery Commission was established by the Convention on Great Lakes Fisheries between Canada and the United States, which was ratified on October 11, 1955 . It was organized in April 1956 and assumed its duties as set forth in the Convention on July 1, 1956. The Commission has two major responsibilities: first, develop coordinated programs of research in the Great Lakes and, on the basis of the findings, recommend measures which will permit the maximum sustained productivity of stocks of fish of common concern; second, formulate and implement a program to eradicate or minimize sea lamprey populations in the Great Lakes.

The Commission is also required to publish or authorize the publication of scientific or other information obtained in the performance of its duties. In fulfillment of this requirement the Commission publishes the Technical Report Series, intended for peer-reviewed scientifje literature, and Special Publications, designed primarily for dissemination of reports produced by working committees of the Commission. Technical Reports are most suitable for either interdisciplinary review and synthesis papers of general interest to Great Lakes fisheries researchers, managers, and administrators or more narrowly foeused material with special relevance to a single but important aspect of the Commission's program. Special Publications, being working documents, may evolve with the findings of and charges to a particular committee. Sponsorship of Technical Reports or Special Publications does not necessarily imply that the findings or conclusions contained therein are endorsed by the Commission.

COMMISSIONERS

Canada

A. S. Holder
A. Lefebvre-Anglin
H. A. Regier
P. H. Sutherland

United States
W. P. Horn
W. M. Lawrence
J. M. Ridenour
C. Ver Duin

SECRETARIAT
C. M. Fetterolf, Executive Secretary
A. K. Lamsa, Assistant Executive Secretary
R. L. Eshenroder, Senior Scientist for Fishery Resources M. A. Ross, Fishery Biologist
B. S. Staples, Administrative Officer

R, E. Koerber, Word Processing Supervisor
L. D. Clove, Secretary

The Lake Trout Rehabilitation Model: Program Documentation

by

Carl J. Walters ${ }^{1}$
Lawrence D. Jacobson
and
George R. Spangler*

Great Lakes Fishery Commission Special Publication No. 86-1

Citation: Walters, C. J., Jacobson, L. D., and G. R. Spangler. 1986. The lake trout rehabilitation model: program documentation. Great Lakes Fish. Corm. Spec. Pub. 86-I. 33 p,

```
GREAT LAKES FISHERY COMMISSION
    1 4 5 1 ~ G r e e n ~ R o a d ~
    Ann Arbor, Ml 48105
            USA
```

August, 1986

1 institute of Animal Resource Ecology University of British Columbia Vancouver, B. C. V6T 1W5 Canada

2 Department of Fisheries and Wildlife University of Minnesota 200 Hodson Hall 1980 Folwell Avenue St. Paul, MN 55108 USA

The Lake Trout Rehabilitation Model:
 Program Documentation

TABLE OF CONTENTS

Foreword 1
Overview 3
Functional Relationships 3
References 9
Policy Analysis (Appendix A) 10
Instructions For Running The Model (Appendix B) 19
Flowchart (Appendix C) 22
Listing of Computer Code (Appendix D) 26
Modifications to the Original Model (Appendix E) 33

FOREWORD

The purpose of this report is to describe and document a computer simulation model known as "The Lake Trout Rehabilitation Model" written by Carl Walters. The Lake Trout Rehabilitation Model has its roots in the work Of Walters et al. (1980) and in the Sea Lamprey International Symposium (SLIS) that was sponsored by the Great Lakes Fishery Commision and Convened in 1979. Over time, and with the help Of numerous individuals, the Lake Trout Rehabilitation Model evolved into its present form. Unlike the models described by Koonce et al. (1982) and Spangler and Jacobson (1985), the Lake Trout Rehabilitation Model was not written by a large team of experts during an adaptive management workshop.

The Lake Trout Rehabilitation Model simulates most aspects of lake trout population biology, including factors that are thought to contribute to delayed rehabilitation of Great Lakes lake trout stocks: 1) mortality due to predation by sea lamprey, 2) fishing mortality, 3) reproductive incompetence of stocked fish and 4) time lags due to the relatively late age at maturity in lake trout. The model is realistic in that it includes the essential features of an age structured population and important biological characteristics of lake trout. It is important to remember, however, that the model does not include some aspects of lake trout biology that may be crucial to the problem of lake trout rehabilitation, notably changes in growth of lake trout due to forage base limitations. Furthermore, the true functional relationships between some of the entities in the model (e.g. mortality of lake trout and abundance of sea lamprey, abundance of sea lamprey and dollars spent for sea lamprey control) are unknown and are represented in the model by "best guesses". For these reasons results obtained using the Lake Trout Rehabilitation Model should be interpreted qualitatively rather than quantitatively.

The Lake Trout Rehabilitation Model simulates rehabilitation of a trout stock from an initial condition of no fish. Rehabilitation is achieved through control of sea lamprey, lake trout stocking and limitations on fishing effort. The rate of rehabilitation depends on how much money is spent on lamprey control, the number of yearling lake trout stocked and the amount of fishing effort; these policy variables are controlled by the person using the model. The model runs quickly ($21 / 4$ minutes to simulate 30 years) and plots the status of the simulated trout Stock and fishery on the screen at the end of every simulated year. The user can interrupt the simulation at any time in order to Chang8 the policy variables. These features are important because they allow the user to experiment with a variety of different policies for lake trout rehabilitation and to continuously monitor the effects of those policies as the Simulation progresses. The potential for interactive use of the program and the degree of realism that was obtained make use of the Lake Trout Rehabilitation Model an interesting exercise.

The Lake Trout Rehabilitation Model is written in Applesofftw BASIC and will run under Disk Operating System 3.3 (DOS 3.3) on any Apple $\|^{\text {™ }}$ series microcomputer with at least 64 K of memory. The model can be obtained on a 5 $1 / 4$ inch floppy disk from the Great Lakes Fishery Commission or from George

Spangler. There are two versions of the program: "INTERACTIVE TROUT. ORIGINAL" and "INTERACTIVE TROUT". INTERACTIVE TROUT. ORIGINAL is the original version written by Walters. INTERACTIVE TROUT is a version that was modified by the junior authors. The modifications were made to correct a minor bug and to enhance the readability of the computer code (see Appendix E). The original and modified VerSiOns are both useable and will give similar, though not identical, results.

Functional relationships used in the Lake Trout Rehabilitation Model are described in the main body of this document. Policy analysis (using the modified version) is illustrated in Appendix A. Appendix B gives instructions for running the models. A flow chart and listing of the computer code are given for INTERACTIVE TROUT in Appendices C and D, respectively. Appendix E describes the differences between INTERACTIVE TROUT and INTERACTIVE TROUT.ORIGINAL.

The Lake Trout Rehabilitation Model:

Program Documentation

OVERVIEW

The objective of the Lake Trout Rehabilitation Model is to simulate changes in lake trout abundance using an age structured population model that realistically accounts for: 1) known time lags (between birth, stocking, maturity and recruitment to the fishery), 2) stocking policy, 3) differences in the reproductive capability of wild and stocked fish, 4) natural limits to recruitment (the stock-recruitment relationship and juvenile habitat capacity) and 5) mortality due to natural factors, lamprey predation and fishing. Not included in the model are a number of more controversial relationships such as changes in the forage base, changes in the abundance of alternate hosts for sea lamprey and changes in lake trout habitat due to pollution. The "slow dynamic" of spawning habitat recolonization and adaptation of local stocks is not considered; instead, it is assumed that all major spawning shoals are simultaneously recolonized as abundance of lake trout increases. The model starts from an initial condition of no fish. Abundance of lake trout increases as fish are stocked and as stocked fish begin to reproduce naturally. Thirty years of lake trout rehabilitation are simulated.

Functional Relationships

The following are detailed descriptions of the important functional relationships in the Lake Trout Rehabilitation Model. Values for constants and initial values of variables are given in parentheses after the quantity is defined.

Age Structure

The number of fish age a in year t is related to the number of fish age $a+1$ in year $\mathrm{t}+1$ by:

$$
\begin{equation*}
N_{a+1, t+1}=N_{a, t} \exp \left(-M-v_{a} q E_{t}-\lambda_{t} L_{t} p / V_{t}\right) . \tag{1}
\end{equation*}
$$

Where: $\quad N_{a, t}=$ number of trout age a in year t ,
$\mathrm{M}=$ natural mortality rate in the absence of sea lamprey (constant $=0.3$),
$\mathrm{Va}=$ relative vulnerability to fishing for trout at age a (constant, see Table 1),
$q=$ catchability coefficient for fully recruited fish (6.0×10^{-7}),
$E_{t}=$ fishing effort in year t (see below),
$\lambda_{t}=$ number of trout attacked per lamprey in year t (see below),
$L_{t}=$ lamprey abundance in year t (see below),
$p=$ probability of a lake trout surviving one lamprey attack (0.4),
$V_{t}=$ total number of trout vulnerable to lamprey attack at the start of year t (all trout age 4-15).

Note that the instantaneous rates for fishing and lamprey induced mortality in [1] are $\operatorname{Va} q E_{t}$ and $\lambda_{t} L_{t} p / V_{t}$, respectively. The maximum age for lake trout is 15 years.

Table 1. Relative vulnerability to fishing by age for lake trout.

Age (a)	V_{a}
1	0.0
2	0.0
3	0.0
4	0.1
5	0.3
6	0.7
7-15	1.0

Lamprey mortality
The number of attacks per lamprey in year t is given by:

$$
\begin{equation*}
\lambda_{t}=\alpha V_{t} /\left(\beta+V_{t}\right) . \tag{2}
\end{equation*}
$$

Where: $\quad \lambda_{t}=$ the number of attacks per lamprey in year t , $\alpha=$ the maximum number of attacks per lamprey (10),
$\beta=$ density of lake trout at which λ_{t} is half the maximum (3000),
$V_{t}=$ abundance of lake trout that are vulnerable to lamprey (all trout age 4-15 in year t).

Natural reproduction

Stocked and wild fish are assumed to mate randomly. Total effective egg deposition is given by:

$$
\begin{align*}
E_{t}= & \sum_{a=m+0 j} N_{a, t} f_{a}\left\{R_{t-a}\left[S_{t} \omega_{w w}+\left(1-S_{t}\right) \omega_{w s}\right]+\right. \\
& \left(1-R_{t-a}\left[S_{t} \omega_{w s}+\left(1-S_{t}\right) \omega_{w w}\right]\right\} . \tag{3}
\end{align*}
$$

Where: $E_{t}=$ effective egg deposition in year t,
$R_{t}=$ the ratio of wild yearlings to total yearlings in year t,
$S_{t}=$ the ratio of wild fish to stocked fish in year t,
$f_{a}=$ the average fecundity for fish age a,
$=$ proportion mature x proportion female X eggs per female (Table 2),
$\varpi_{w w}=$ relative reproductive success for mating between two wild fish (1.0),
$\omega_{W S}=$ relative reproductive success for mating between a wild and a stocked fish (0.75),
$\omega_{S S}=$ relative reproductive success for mating between two stocked fish (0.5),
$m=$ the age of maturity (7),
j = the maximum age for lake trout (15).
All fish that result from spawning in the lake are assumed to be wild type at spawning time.

Table 2. Average fecundity by age for lake trout.

Age (a)	f
1-6	0
7	100
8	1000
9	2000
10	3000
11	4,000
12	5,000
13	6,000
14	7,000
15	8,000

Limits to recruitment

The number of yearling recruits in year $t+1$ is given by:
$N_{1, t+1}=S_{t+1}+s_{0} E_{t} /\left(1+s_{0} E_{t} / K\right) . \quad[4]$
Where: $N_{1, t+1}=$ total number of yearlings in year $t+1$,
$S_{t+1}=$ number of yearlings stocked in year $t+1$ (2 million),
$E_{t}=$ effective egg deposition in year t ,
K = maximum number (carrying capacity) of wild yearlings (20 million),
S_{0} = maximum survival rate from egg to yearling under uncrowded conditions (0.004).

The relationship between egg deposition and yearlings is illustrated in Figure 1.

Figure 1. Number of yearlings produced as a function of effective egg deposition (assuming 2 million stocked yearlings).

Fishing Effort
Fishing effort is a constant fraction of the vulnerable stock until a maximum value is reached:

$$
\begin{array}{ll}
E_{t}=0.2 V_{t} & \left\{\text { if } 0.2 N_{v} \leq E_{\max }\right\} \\
E_{t}=E_{\max } & \left\{\text { if } 0.2 N_{v}>E_{\max }\right\}, \tag{5}
\end{array}
$$

where $E_{\hat{i}}$ is the fishing effort in year t, V_{t} is the number of fish vulnerable to fishing in year $t\left(V_{t}=\Sigma V_{i} N_{i, t}\right)$ and $E_{\text {max }}$ is the maximum effort (1 million boat days).

Lamprey control by expenditure of money
The relationship between lamprey abundance and dollars spent on lamprey control (Figure 2) is given by:

$$
\begin{equation*}
L_{t}=200000 /\left(1+D_{t} / 2000000\right) . \tag{6}
\end{equation*}
$$

Where $L t$ is the number of lamprey in year t and $D t$ is dollars spent on lamprey control in year t (6 million dollars). Expenditure of six million dollars gives 50,000 lamprey, expenditure of zero dollars gives 200,000 lampreys.

Figure 2. Number of lamprey as a function of dollars spent on lamprey control.

REFERENCES

Eshenroder, R. L., J. F. Kitchell, C. H. Olver, T. P. Poe, and G. R. Spangler. 1984. Overview, p. 44-50. In: R. L. Eshenroder, T. P. Poe, and C. H. Olver [ed.] Strategies for rehabilitation of lake trout in the Great Lakes: proceedings of a conference on lake trout research, August 1983. Great Lakes Fish. Comm. Tech. Rep. No. 40. 63 p.

Koonce, J. F. [ed.] 1982. A review of the adaptive management workshop addressing salmonid/lamprey management in the Great Lakes. Great Lakes Fish. Comm. Spec. Publ. 82-2. 57 p.

Spangler, G. R., and L. D. Jacobson [ed.] 1985. A workshop concerning the application of integrated pest management (IPM) to sea lamprey control in the Great Lakes. Great Lakes Fish. Comm. Spec. Publ. 85-2. 97 p.

Walters, C. J., G. Steer, and G. Spangler. 1980. Responses of lake trout (Salvelinus namaycush) to harvesting, stocking, and lamprey reduction. Can. J. Fish. Aquat. Sci. 37: 2133-2145.

APPENDIX A

POLICY Analysis

The following examples illustrate the way in which the Lake Trout Rehabilitation Model can be used to investigate the effects Of stocking, harvest and sea lamprey control on rehabilitation of lake trout stocks. There are four examples. The first is a "baseline" scenario in which the number of fish stocked, maximum fishing effort and dollars spent on lamprey control are kept at their initial values (2 million fish, 6 million dollars and 1 million boat days, respectively) through the entire simulation. In the second scenario the amount of money spent for lamprey control is reduced to 2 million dollars (one-third the value used in the baseline case) in order to examine the effects of reduced sea lamprey control on lake trout rehabilitation. Rehabilitation of lake trout in a refuge is depicted in the third example; fishing effort was zero boat days per year through the entire simulation. In the fourth scenario the number of fish stocked is temporarily reduced in year 15 to zero. The effects of a one year interruption in the stocking program are illustrated. Most of these examples are taken from the recommendations by Eshenroder et al. (1985) for large scale field experiments. The axes in the following figures keep the same scale from one scenario to the next in order to facilitate comparison of results from different simulations.

Figure AI. Simulation results for baseline scenario (2 million fish stocked annually, 6 million dollars spent annually for lamprey control, and 1 million boat days per year as the maximum fishing effort). After 30 years of rehabilitation the number of 10 year old fish is negligible, wild fish constitute 50% of the mature stock and the annual catch is 400,000 fish.

Figure A2. Simulation results for scenario with reduced budget for lamprey control (2 million dollars annually for sea lamprey control, other control variables as in baseline scenario). Note that the rate of rehabilitation is much reduced and that total catch in year 30 is about $1 / 4$ the value obtained in the baseline scenario.

ABUNDANCE AGES 1, 5, 10

FISHING EFFORT, HARVEST

STOCKING, MATURE SPAWNERS

LAMPREY ABUNDANCE, WNDS / FISH

Figure A3. Simulation results for scenario with no fishing effort. This is the only scenario that (gives an appreciable number of 10 year old fish and more than 50% wild fish in the mature stock by year 30 .

Figure A4. Simulation results for scenario with no fish stocked in year 15 (other policy variables same as for baseline scenario). Note that the number of yearlings in year 16 produced from natural reproduction in year 15 can be clearly seen in the upper right panel. By the end of the simulation, most variables are not much different from the levels obtained in the baseline scenario.

ABUNDANCE AGES 1, 5, 10

FISHING EFFORT, HARVEST

STOCKING, MATURE SPAWNERS

LAMPREY ABUNDANCE, WNDS / FISH

Appendix B

INSTRUCTIONS For Running the LAke TROUT REHABILITATION Model

Abstract

Both versions of the Lake Trout Rehabilitation Model (INTERACTIVE TROUT and INTERACTIVE TROUT.ORIGINAL) are written in Applesoft ${ }^{\text {M }}$ BASIC and run under Disk Operating System 3.3 (DOS 3.3) on an Apple $\|^{\text {ma }}$ series microcomputer with at least 64 K of memory. To run either model do the following:

1) Insert the disk into the internal disk drive.
2) Turn the computer on. When the disk drive stops turning a greeting message is displayed.
3) Type "RUN" plus the name of the program plus a carriage return to load a program and run it (e.g. "RUN INTERACTIVE TROUT" followed by a carriage return). You can type "CATALOG" to see the names of the files on the disk.
4) The program will ask you to press a key in order to start the simulation.
5) If you are using the original version (i.e. INTERACTIVE TROUT.ORIGINAL) then the simulation will commence immediately. If you are using the modified version (i.e. INTERACTIVE TROUT) then the program will give you the opportunity to change the policy variables before the simulation begins. To change a policy variable type the new value plus a carriage return in response to the appropriate prompt. For example, if you type 10000 plus a carriage return in response to the prompt "ANNUAL PLANTING (2000000):" then the number of yearling lake trout planted annually will be changed from the old value (2000000) to the new value (10000). Typing a carriage return only in response to a query will leave a value unchanged. A new value, once entered, is used for the remainder of the simulation or until it is changed again.
6) Once the simulation begins, you can interrupt the simulation in order to change the policy variables at any time by pressing the space bar. The program will stop within a few seconds and give you the opportunity to specify new values for the policy variables. Follow the instructions in the instruction above to change a policy variable.
7) The numbers of fish in ageclasses l-9 are printed (in thousands of fish) at the bottom of the screen at the end of every simulated year.
8) A number of variables are plotted on the screen at the end of each simulated year. If you have a Color monitor then the plots for different variables will be in different colors. The variables are described in Table B1.
9) The model will simulate 30 years of lake trout rehabilitation. At the end of the simulation the program will prompt you to either quit or start a new simulation. Press "Q" to quit or any other key will start a new simulation. If you press "Q" accidentally or change your mind about quitting then type "RUN" or "RUN" plus the version name followed by a carriage return.

Table B1. Description, plotting color and maximum value for the variables plotted by the Lake Trout Rehabilitation Model.

Description Color Maximum Value
Panel 1 (upper left) number age 1 number age 2 number age 3

Panel 2 (upper right)
\% wild yearlings
\% wild fish age >=5
number yearlings stocked
Panel 3 (lower left)
sport effort
total catch
catch of wild fish
Panel 4 (lower right) lamprey wounds per fish white 1 wound per fish number sea lamprey
white 6 million fish
green 6 million fish
orange 6 million fish

white	100%
green	100%
orange	6 million fish

white $\quad 10^{6}$ boat days/year
green 1 million fish
orange 1 million fish

white	1 wound per fish
orange	300,000

Appendix C

FLOWCHART

The following is an informal flowchart that describes the order of computations in the simulation program INTERACTIVE TROUT. Sections of the computer code that draw the graphic images on the screen are omitted from the flowchart for simplicity. The line numbers in the computer program at which computations occur are indicated in parentheses.

DIMENSION ARRAYS (20-70),
LOAD MACHINE LANGUAGE ROUTINE (80),
PRINT GREETING AND TITLE OF PROGRAM (90-110)

RESET DATA POINTER, INITIALIZE VARIABLES, DRAW PLOTS AND LABELS ON SCREEN (120-130)

START SIMULATION (140-I 50)
(FROM 860)

INITIALIZE VARIABLES FOR CURRENT TIME STEP (190-200)

PRINT ABUNDANCES FOR AGES 1-9 ON SCREEN (210-220)

CALCULATE TOTAL NUMBER WILD MATURE FISH AND TOTAL NUMBER OF MATURE FISH IN CURRENT YEAR (230-240)
(NEXT PAGE)

Appendix D
 Listing of Computer Code

The following is a complete listing of the Lake Trout Rehabilitation Model named INTERACTIVE TROUT. The dashed lines between lines of computer code are meant to improve readability; they are not part of the code.

VARIABLES, ORAN PLOTEING RECTANGLES AND LABELS ON SCREEN, THEN GIVE OSER A CHANCE 70 CEANGE MANAGEMENT VAREABEES

250	REM GALCUJAEE IOAL NUMBER OE HILD MATURE ETSH ANO TOTAL NCMBER CE MAZORE EISH EOR こごRENT YEAス
260	
270	MATURE ミニSE ご CURRミN： YEAR
280	
290	
300	
310	$\begin{aligned} & E=0 \\ & E O R A=M T C N A \\ & T A=T P-A \\ & E=E+N(A) * \Sigma(A) *(1- \\ & \quad R(T A)) * R S-R(T A) * R N) \end{aligned}$ NEXT
320	j＝：CALCOUATE ZES NUMEER CE YミARELNGS（Wi）ミスコこことここ FRCM SPANNENG
330	$\begin{aligned} & E M+E \\ & W 1=2 M /(1+P M / R Z)+0 \end{aligned}$
340	REM TAICULATE THE ABUNDANCE OF trout that are vulnerabie TO LAMPREY（V）
350	```V = 0 FOR A = L TO NA V = V + N(A)``` NEXI
360	REM CALCULATE THE NUMBER OF trout that are vulnerable TO EISHING
370	```vs = 0 FOR A = I TO NA VS = VS + V(A) * N(A) NEXT```
380	REM CALCULATE FISHING EFEORT （ES）IN YEAR，IF TEE FISHING EFFORT IS HEGHER than the maximum aidowed THEN SET EFEORT EQUAL TO THE MAXIMUM

330	```\XiS = AE * vS こミ ミS > ミM こaEN ミS = ミM```
500	```SEM こAここここAこE ごこ zNSTANTANEOUS F-SH:NG RATE FOR EJLこY RECROここEO AGミC:ASSES```
$4: 3$	$F R=C E * E S$
420	rem caiculate the number os －AMPREY（LT）AS A EONCTEON OF THE AMOCN：GE MCNEY SZEN：EOR SAMEREY control
430	$L E=E 2 /(2+i x / L 2)$
440	REM CACCUEATE THE NUMBER OE
550	$E A=A L * V /(B L+V)$
560	REM calculate the Instantaneous rate of MORTALITY DUE TO LAMPREY （：M）
470	$L M=L A * L T *(1-P L) / V$
480	rem zisezalize rotal harvest （H）AND TOTAL HAPVEST OF ※IED EISH（WH）
490	$\begin{aligned} & \because=0 \\ & z:=0 \end{aligned}$
500	REM CALCULATE HARVEST AND SURVIVAL FCR EACH ageclass
$5: 0$	ECR A $=2$ TO NA
520	rem calculate total INSTANTANEOUS MORTALITY AS NATURAL MORTALITY＋ EISHING MORTALITY＋ LAMPREY MORTALITY
530	$\begin{aligned} & F A=F R * V(A) \\ & Z=M R+F A \\ & I F A>=L \text { IHEN } Z=Z+L M \end{aligned}$
540	rem calculate the age specific survival rate （SU）AND NUMBER OF FISH CAUGHT FROM EACH AGECLASS （ HA ）
550	$\begin{aligned} & S U=\operatorname{EXP}(-Z) \\ & H A=E A * N(A) *(1-S U) / Z \end{aligned}$

560	REM CALCULATE THE TOTALGARVEST (H) AND IHE TOTALNUMBER OF WIID ETSACAUGHT (WH)	--------------------	
			$z(7)=E S$
			$2(8)=H$
			$z(9)=W H$
570	$\mathrm{H}=\mathrm{H}+\mathrm{HA}$		$2(20)=\Sigma T$
	WH $=$ WH + HA * $2(2 P-A)$		$z(11)=L A * L T ~ P L / V$
580	rem calculate tee ndmber of SURVIVORS in Each agectass	690	REM If there are no fish VULNERABLE TO LAMPREy THEN SET FOUNDS PER EIS:
590	$N(A)=N(A) * S U$		
		700	IF $\mathrm{V}<1$ THEN $2(11)=1$
600	NEXT		
		710	rem scale the values berore
610	REM AGE ALL TYE EISH 3Y ONE		PLOTTING
	VEAR		
		720	EOR I = 1 T0 6
620	$N(N A)=N(N A)+N(N A-1)$		$Z(I)=27 *(U N-Z(I) /$.
			2M(I))
630	$\text { EOR } A=N A-1 \text { TO } 2 \text { STE? - } 1$		IF $\mathrm{Z}(\mathrm{I})<0$ THEN $Z(\mathrm{I})=0$
	NEXT	730	NEXT
	$\mathrm{N}(1)=\mathrm{Nl}$		
		740	FOR $I=7$ TO 11
640	REM CALCULATE POSITION ON XAXES FOR PLOTTING CURRENT		$\begin{aligned} & Z(I)=28+27 *(U N-Z(I) \\ & Z M(I)) \end{aligned}$
	VALUES (Z1 FOR PLOTS ON		IF $2(I)<28$ THEN $Z(I)=28$
	right side of screen and		
	22 FOR PIOTS ON LEET SIDE	750	NEXT
	CE SCREEN) AND STCRE		
	OUTPUt variabjes -n z	760	?zm glot the values
	FOR PLOTTING		
		7:0	$\because \mathrm{FI}=0$ THEN FOR I-1 TO 3
650	: 2 (1) IS THE NOMBER OR 1	* :	HPLOT 21.2(I)
	YEAR OLDS, $2(2)$ IS THE	* :	NEXT
	NUMBER OE 5 Year olds,	* :	FOR $=4$ TO 6
	2 (3) IS THE NUMBER OF 10	* :	HPLOT $22,2(1)$
	YEAR OLDS, $2(4)$ IS THE	* :	NEXT
	Number of yearlings	* :	FOR I $=7$ TO 9
	STOCKED, $2(5)$ IS THE	*	HPLOT $21.2(\mathrm{I})$
	PROPORTION WILD MATURE	* :	NEXT
	FISH	* :	FOR $\mathrm{I}=10 \mathrm{TO} 11$
			HPLOT $22.2(\mathrm{I})$
		* :	NEXT
660	$21=T I * 2 X$	*	GOTO 850
	$22=2.4+$ II * $2 X$	--------------------	
	$2(1)=N(1)$	780 :	FOR I = 1 TO 11
	$2(2)=N(5)$		HCOLOR= HC(I)
	$\mathrm{Z}(3)=\mathrm{N}(10)$	790	
	$2(4)=S T$		$2 \mathrm{~L}=23$
	$\mathrm{Z}(5)=\mathrm{PW}$		$2 \mathrm{U}=21$
670	REM $2(6)$ IS THE PROPORTION	800	IF I < 4 THEN 840
	WILD YEARLINGS IN CURRENT YEAR, $2(7)$ IS THE SPORT	810	IF I > 3 AND $\mathrm{I}<7$ THEN ZL $=$
	EFFORT, $2(8)$ IS THE		29
	harvest, $2(9)$ is the	*	$2 \mathrm{U}=22$
	HARVEST OF WILD FISH,		
	$Z(10)$ Is the number or	820	IF I > 6 AND I < 10 THEN 840
	LAMPREYS, AND $2(11)$ IS		
	LAMPREY WOUNDS PER FISH	830	IF I > 9 THEN 2L $=29$

```
:000 42502:49,2 =0:49,75 20 2-9,75
            20 279,0 =0 -49,0
----------------------
```



```
            :30,84 =0 0.34
-------------------
:220 #250T :49.84 TO 249.:59 =0
        279,159 T0 279,84 50
        :49.84
:030 =2:0T 43,73 =0 43.75
    : #P50T 43,:57 TO 43,159
    : #FLOT 86,73 TO 86,75
    : #2エ07 36,157 70 86,159
:040 FELOT :92,73 TO 192,75
    : #PEOT 192.157 20:92.159
    : HPさOT 235,73 TO 235,75
    : #ミこ0% 235,:57 T0 235,159
:050 zNS = "NOS AT AGES 1,5,10"
    : x = 5
    : Y = 7
    : GOsub 1440
1060 zNS = "EFFORT, CATCHES"
    : X = 5
    :Y = 90
    : COSUB 1440
2070 2NS = "PLANTING,*WILD"
    : x = :55
    : Y = 7
    : GOSOB 1440
----------
:080 Z.NS = "LAMPREY,WOUNDS/FISA""
    : x = 155
    : Y = 90
    : GOSUB :440
----------------------
1090 ZNS = "YEAR:"
    x = 0
    Y = 80
    gosub 1440
    x = 149
    cosus 1440
!----------------
1100 zNS = "10"
    X = 34
    Y = 80
    GOSUB 1440
    x = 283
    GOSUB 1440
1110 2N$ = "20"
    X = 77
    gOSUB 1440
    x = 226
    gOSUB }144
1120 2NS = "30"
    X = 121
    gOSUB 1440
```

	$\begin{aligned} & x=265 \\ & \text { GOSUB } 1440 \end{aligned}$
1130	RETURN
1140	END
1150	REM THE FOLIOWING CCNTAINS INETIAJ VALUES TOR VARIABLES AND cONSTANES
1160	REM \quad SI＝MAX SURVIVAL RAIE EROM EGG TO YEARGING，ミK ＝CARRYING CARACE： COR WILD YEARENGS，ご＝ pROBABILIMY OE SURVIVING A LAMPREY ATEACK
1170	REM FS＝RELATIVE SUCCESS EOR STOCKED 3Y STOCKED MATING，FE＝RELATEVE SUCCESS FOR SEOCKED BY NILD MATENG，FW＝ RELATIVE SUCCESS OF NIED BY WILD MATING，AND W1＝ NUMBER YEARLINGS IN CURRENT YEAR FRCM EGGS ？RODUCED LAST YEAR
1180	$\begin{aligned} & S 1=. C 04 \\ & R K=2026 \\ & \because \\ & \because \\ & \square \\ & \vdots \\ & B \end{aligned}$
1190	7a：$\quad \lambda_{t}=$ MAXIMUM ATEACKS PER YEAR FOR ONE LAMPREY，3L $=$ ZROUT DENSITY NEECED ：O ACHIEVE 0.5 ＊AL，MR＝ NATURAL MORTALITY RA：E （WITHOUT LAM PREY），$O=A$ VERY SMALL NUMBER，M＝ AGE AT MATURITY，$L=A G E$ AT VULNERABILITY TO LAMPREY
1200	$\begin{aligned} & A L=10 \\ & B L=30000 \\ & M R=.3 \\ & O=1 E-6 \\ & M=7 \\ & L=4 \end{aligned}$
1210	REM INITIALILE AGE SPECTETC EECUNDITIES
1220	$\begin{aligned} & \text { DAIA } \\ & 0,0,0,0,0,0,100,1000,2000 \\ &, 3000,4000,5000,5000,7000 \\ &, 8000 \\ & \text { FOR I }= 1 \text { TO } 15 \end{aligned}$

$x=265$
GOSUB 1440

1140 END
1150 REM THE FOLLOWING CCNTAINS
INEIIAL VALUES IOR
variables and consamins
SI＝MAX SURVIVAL RAEE FROM EGG TO YEARETMG，इK WILD YEARIINGS，$\because=$ pROBABELIMY OE SURVIVING A LAMPREY ATEACK

1170 REM FS＝RELATIVE SUCCESS EOR STOCKED 3Y STOCKED MATING，EG＝RELATEVE SUCCESS FOR SIOCKED 3Y NILD MATING，FW＝ alive success of NUMBER YEARLINGS IN CURRENT YEAR ERCM EGCS ？RODUCED LAST YEAR

```
1180 S1 =. .004
    : #
    O
    *
    L = MAXIMUM ATTACKS PER
                    YEAR FOR ONE LAMPREY, 3L
                        = ZROUT DENSITY NEEDED TO
                    ACHIEVE 0.5 * AL, MR =
                    NATURAL MORTALITY RAZE
                        (WITHOUT LAM PREY), O = A
                    VERY SMALL NUMBER, M =
                    AGE AT MATURITY, L = AGE
                    AT VJLNERABILITY TO
                    LAMPREY
1200 AL = 10
        BL = 30000
        MR = . 3
        O=1E - 6
        M=7
        M=7
                    0,0,0,0,0,0,100,1000,2000
                    ,3000,4000,5000,5000,7000
                    ,8000
        FOR I = 1 TO 15
```

```
        READ E(I)
    NEXT
:230 REM ENITIAL:ZE NUMBERS AT AOE
----------------------
1240 FOR I = 1 TO 20
        N(I) = 0
    NEXT
-----------------------
1250 REM EVITIALIZE AGE SEECIEIC
            vULNERABILZEIES TO
            EISHING
1260 DATA 0,0,0,.1,.3,.7,1,2,2,:
    IOR I = 1 TO 10
        READ V(I)
    NEXT
    FOR I = 11 TO 20
        V(I) = 1
    NEXT
---------------------
:270 REM INITIALIZE NUMBER OF
                                    LAMPREYS (LT), MONEY
                                    SPENT ON LAMPREY CONTROL
                                    (LX). NUMBER OF LAMPREYS
                                    IITH NO LAMPREY CONTROL
                                    (L1), AND A CONSTANT USED
                                    TO CALCULATE THE NCMBER
                                    OF LAMPREY (L2)
1280 IT = 50000
    : IX = 6\Xi6
    : L1 = 255
    : L2 = 2E6
----------------------
1290 REM ININTALIZE NUMBER O
                                    YEARLINGS STOCKE:
                                    ANNUALLY
1300 ST = 2E6
13:0 REM :NITIALIZE INSTANTANGOUS
                                    FISHING MORTALITY RATE
                                    (FR), A CONSTANT USED TO
                                    CALCULATE FISHING EFFORT
                                    (AE), CATCHABILITY
                                    COEFFICIENT FOR FULLY
                                    RECRUITED FISH (QE)
1320 FR = . 15
    : AE = . 2
    : QE = 6E - 7
1330 REM \begin{tabular}{c} 
INITIALIZE THE MAXIMUM \\
\\
\\
\\
\\
\\
\\
\\
（EMSMING EFFORT ALLOWED
\end{tabular}
-----------------------
1340 EM = 1E6
1350 REM SPECIEY THE NUMBER OF
                                    AGECLASSES (NA)
1360 NA = 15
-----------------------
                                    EISHING EFEORT ALLOWED
                                    (EM)
-----------------
```

```
1370 REM INITIALIZE THE PRCPORTICN
                                    WILD YEARLENGS \R(2):
1380 FOR I = 1 TO NA
    R(I)=1E-9
    NEXT
2390 REM SEECIEY THE MAXIMUM VAZこES
                                    THAT CAN be pyOTRED FOR
                                    EACH VARIABLE
----------------------
1400 こATA 6\Xi6,6E6,5E6,6E6,:.,.
                                    2Е6,:ミ5,:ミ6,300000,:
    FOR I = : 20 : :
        READ ZM(I)
    NEXT
14:0 REM SPECTEY THE COEOR IO 3E
                USED EOR PlOTTING EACA
                variable
1420 DATA 3,1,5,5,2,3,3,1,5,5.3
    FOR I = 1 TO :1
        READ HC(I)
    NEXT
1430 RETURN
1440 ROT= O
    : FOR [] = : OO SEN (ZNS)
        ASC ( MODS (ZNS,II,:)) -
        31
    : ご r < 1 THEN II = 2
1450 Stir II AT X + 6*II,Y
    : NEXi
    : RENUN
---------......----------
1460 E\:0
```


Appendix E
 Modifications By The EditOrS To The Original Model

1) A comment was added to every line of code that had biological significance.
2) The code was renumbered (the first line in the new version is number 10, each line increments by 10).
3) The subscript on the vector F in line 240 of the original version (line 310 in the modified version) was changed from $A-M$ to A. The fecundity table in line 10030 of the original model was altered to complement the subscript change (lines 1210-1220 in the modified version). As a result of these changes the fecundity table and egg deposition calculations are indexed by age. The modifications do not affect numerical results.
4) The order of calculations in the original model was changed so that the number of yearlings in year t is the sum of yearlings produced from spawning in year t-1 and yearlings stocked in year t . The relevant line numbers are $250-260$ in the original version and 240 and 330 in the modified version.

SPECIAL PUBLICATIONS

79-1 Illustrated field guide for the classification of sea lamprey attack marks on Great Lakes lake trout. 1979. E. L. King and T. A. Edsall. 41 p.

82-1 Recommendations for freshwater fisheries research and management from the Stock Concept Symposium (STOCS). 1982. A. H. Berst and G. R. Spangler. 24 p.

82-2 A review of the adaptive management workshop addressing salmonid/lamprey management in the Great Lakes. 1982. Edited by J. F. Koonce, L. Greig, B. Henderson, D. Jester, K. Minns, and G. Spangler. 40 p.

82-3 Identification of larval fishes of the Great Lakes basin with emphasis on the Lake Michigan drainage. 1982. Edited by N. A. Auer. 744 p.

83-1 Quota management of Lake Erie fisheries. 1983. Edited by J. F. Koonce, D. Jester, B. Henderson, R. Hatch, and M. Jones. 39 p.

83-2 A guide to integrated fish health management in the Great Lakes basin. 1983. Edited by F. P. Meyer, J. W. Warren, and T. G. Carey. 262 p.

84-1 Recommendations for standardizing the reporting of sea lamprey marking data. 1984. R. L. Eshenroder, and J. F. Koonce. 21 p.

84-2 Working papers developed at the August 1983 conference on lake trout research. 1984. Edited by R. L. Eshenroder, T. P. Poe, and C. H. Olver.

84-3 Analysis of the response to the use of "Adaptive Environmental Assessment Methodology*' by the Great Lakes Fishery Commission. 1985. C. K. Minns, J. M. Cooley, and J. E. Forney. 21 p.

85-1 Lake Erie fish community workshop (report of the April 4-5, 1979 meeting). 1985. Edited by J. R. Paine and R. B. Kenyon. 58 p.

85-2 A workshop concerning the application of integrated pest management (IPM) to sea lamprey control in the Great Lakes. 1985. Edited by G. R. Spangler and L. D. Jacobson. 97 p.

85-3 Presented papers from the Council of Lake Committees plenary session on Great Lakes predator-prey issues, March 20, 1985. 1985. Edited by R. L. Eshenroder. 134 p.

85-4 Great Lakes fish disease control policy and model program. 1985. Edited by J. G. Hnath. 24 p.

85-5 Great Lakes Law Enforcement/Fisheries Management Workshop (Report of the 21, 22 September 1983 meeting). 1985. Edited by W. L. Hartman and M. A. Ross. 26 p .

85-6 TFM vs. the sea lamprey: a generation later. 1985. 17 p .

