A REVIBW OF THE ADAPTIVE MANAGEMENT WORKSHOP ADDRESSING SALMONID/LAMPREY MANAGEMENT
 IN THE GREAT LAKES

(Convened by the Great Lakes Fishery Commission at Sault Ste. Marie, Michigan, September 30-October 6, 1981)

Great Lakes Fishery Commission

1451 Green Road
Ann Arbor, Michigan 48105

The Great Lakes Fishery Commission, established by the 1955 Convention on Great Lakes Fisheries between Canada and the United States, was organized in April 1956 and assumed its duties as set forth in the Convention on July 1, 1956. The Commission has three major responsibilities: to develop and coordinate fishery research programs, to advise governments on measures to improve the fisheries; and to develop measures and implement programs to manage sea lamprey. The Commission is also required to publish or authorize the publication of scientific or other information obtained in the performance of its duties.

PROBLEM DEFINITION

The Great Lakes Fishery Commission has two areas of responsibility including control of the Sea Lamprey and fostering interagency cooperation in various fisheries matters. One aspect of this latter responsibility has been a sustained effort to facilitate communication between fisheries managers and scientists. Given the complex fisheries problems in the Great Lakes, the Board of Technical Experts of the GLFC approved a plan to apply the techniques of Adaptive Management to some of these problems.

Adaptive Management is a communication and problem solving procedure developed by C. S. Holling (1978) and his associates at the Institute for Animal Resource Ecology, University of British Columbia. Basically, the procedure consists of a highly structured series of meetings and workshops that seek to produce a computerized simulation model of a resource system. The purposes of the modeling exercise are to promote communication among policy makers, managers, and technical experts, to explore policy options, and to identify information gaps for future work.

To bring this technique to the Great Lakes Region, the GLFC held a training workshop at the University of British Columbia. Based on the favorable response of a group of potential clients and scientists, it was decided that the workshop format should be used to address a current Great Lakes fisheries problem. Because of the substantial investment in control of Sea Lamprey, a general problem in the interactions of salmonids and lamprey seemed appropriate. This first workshop, therefore, had a dual purpose. First, it was to be a demonstration of the potential usefulness of the techniques of Adaptive Management, and second, it was a clarification of the problems and policy options surrounding sea lamprey control and Lake Trout Rehabilitation. Specifically, members of the Council of Lake Committees and some Commissioners of the Great Lakes Fishery Commission suggested that the workshop address an evaluation of the effectiveness and economy of alternative policies to manage offshore fish communities in the Great Lakes.

BOUNDING THE PROBLEM

In an earlier scoping meeting, the client group and workshop staff had established the general problem for the workshop. However, the workshop participants had to interpret this charge. With an explicit goal of creating a simulation model, the participants first decided upon the kinds of actions they would like to take to manage offshore fish communities and what characteristics of the resource system they would want as indicators of the effectiveness of various actions. The actions involved with management fell into three categories: sea lamprey control, fishery regulation, and stocking (Table 1). Indicators of response to these management actions fall into three slightly different groups: economic, fishery, and lamprey abundance (Table 2). In addition to these, several actions and indicators related to water quality were suggested, but were not included in the model due to lack of time.

The problem was further constrained by establishing time and space boundaries. The participants did not need indicators at less than annual periods and felt that at least two generations (~ 30 years) were required to see the effects of rehabilitation of species like

Table 1. Management actions identified at the salmonid/lamprey workshop.

Category	Action
Sea Lamprey Control	- Funding level of control program
	- Regulation of Mix of Treatment Methods
	- Regulation of frequency of treatment
Fishery Regulation	- Regulation of the location of treatment
	- Establish catch quota and allocate to angling and
commercial fisheries	
	- Size regulations
	- Regulation of by-catch in other fisheries
	- Season closure limits of effort
	- Establishment of refugia
	- Taxation and subsidies to various modes of fishing
	- Regulations on amount and selectivity of gear
	- Regulation of number stocked by species and age
Stocking	- Regulation of stocking location
	- Regulation of origin of stocked fish

Table 2. Indicators of Response of the Salmonid/Lamprey Community Identified by Workshop Participants

Category

Economic

Indicator

- New return to commercial fishery
- Contribution to the Regional Economy
- Total Management Costs
- Cost to benefit ratio

Fishery

Lamprey Abundance

- Effort by anglers
- Effort in various commercial fisheries
- Catch per unit effort in various fisheries
- Abundance of spawners in various species
- Biomass of various species
- Size at age for various species
- Alewife die-off
- Wounding rates of main species
- Lamprey adult abundance
- Age composition
- Number of spawners
- Number of ammocoetes

Lake Trout. In addition, the group decided to limit the spatial boundaries to a single large lake.

Within these contraints,. five submodels seemed to partition the workload evenly among the participants. These submodels were:

1. Fishery Dynamics and Economics
2. Lamprey
3. Lake Trout
4. Whitefish/Pacific Salmon
5. Prey or forage species for trout and salmon

Linkages between these submodels were explicity identified in a looking outward matrix (Fig. 1). The diagonal elements contain the main actions and indicators to be produced in each submodel, and the other elements indicate type of information to be exchanged.

MODEL STRUCTURE

The model followed a strict calculation sequence (Fig. 2) utilizing annual time steps for a maximum period of 35 years. The model was written in Applesoft BASIC on an Apple II-Plus microcomputer using the Microsimcon ultility developed at the University of British Columbia. Indicator variables are listed in Table 3.

DESCRIPTION OF SUBMODELS

Fishery Submodel
The fishery submodel describes dynamics of fishing effort and calculates the economic consequences of fishing and management. The dynamics of fishing effort are driven by economic return in commercial fishing and catch rate in sport fisheries.

Sport fishing effort is calculated from combined lake trout and salmon catch rate as

$$
\text { Effort }=\frac{\alpha C^{2}}{(\beta+\gamma) *\left(\mathrm{~K}+\mathrm{C}^{2}\right)}
$$

where C is catch rate as fish/angler day, Y is population of the area from which people travel predominantly to the lake in question, multiplied by angler days per year per capita

Figure 1. Linkages among submodels

	LAMPREY	LAKE TROUT	WHITEFISH SALMONIDS	PREY	FISHERY
LAMPREY	downstream trans. sex ratio size wounding rate	dcath by age	mortality rate by species	```mortality rate by specios 7.1 kg```	cost of control
LAKE TROUT	age and size (N)	stocking population stats.		instantaneous mortality rate	$\begin{aligned} & \text { harvest by gear MT } \\ & \text { management cost - } \\ & \text { stocking } \\ & \text { vulnerable biomass } \end{aligned}$
WHITEFISH	age and size (N)		stocking pop. stats	instantaneous mortality rate	```harvest by species costs - stocking costs vulnerable biomass```
PREY	abundance, age	$\begin{array}{rcc} \text { total biomass } & \text { by } \\ \text { species (YOY) } & \text { ag } \\ \text { metric tonnes } & \\ 0.1 & \mathrm{~kg} \end{array}$	```mctric tonnes biomass sma11 and large```	$\left.\begin{array}{l}\text { alewife } \\ \text { smelt }\end{array}\right\}$ combined herring $\&$ cisco sculpins alcwife die-off*	harvest by gear MT cost stocking vulnerable biomass
FISHERY		```effort-gill 1000 km/night trap-100 set nigh angler-days```	```effort (same units) ts angler-days```	```effort (same units) trawls-hrs dipnet-days pound-100 set nig```	management cost. \$ landed value. $\$$ economic impact hts

Fig. 2. Calculation Sequence of the Salmonid/Lamprey Workshop Model

Table 3. Indicator variables stored in the Simulation Model

Variable	
Number	Description
$\mathbf{1}$	Total Number of Mature Female Lake Trout
2	Total Harvest (MT) of Lake Trout
$\mathbf{3}$	o Natural Lake Trout Yearlings
$\mathbf{4}$	Total Lake Trout Biomass (MT)
$\mathbf{5}$	Management Costs (millions of \$)
$\mathbf{6}$	Contribution to Regional Economy (\$)
7	Angling Effort (10 3 angling days)
8	Salmon Harvest (MT)
9	Whitefish Harvest (MT)
10	Whitefish Biomass (MT)
11	Lamprey Attack Rate on Lake Trout (\#/yr/ind)
12	Lamprey Attack Rate on Whitefish (\#/yr/ind)
13	Number of Yearling Lake Trout
14	Net Return in Commercial Fishery (\$)
15	Salmon Escapement (MT)
16	Alewife Biomass (MT)
17	Adult Cisco Biomass (MT)
18	Gillnet Effort (km)
19	Alewife Die-off (MT)
20	Number of Trapnet Lifts

population

fishing cost/day
is chosen to make the area under the curve equal the population in areas from which people are attracted to the fishery.

At a fixed cost of $\$ 23$

Integration of these relationships leads to

$$
\text { Effort }=\frac{\alpha C^{2}}{(\beta+\gamma)\left(K+C^{2}\right)}
$$

where C is catch rate and the parameters are indicated in the graphs above.

Value of the sport fishery is calculated as consumer surplus from

which in this formulation turns out to equal

$$
\delta * \text { Effort }
$$

with $\delta=.75$
Commercial fishing effort is calculated based on the notion that effort will expand to use available revenue. To do this, the dockside value of fish is calculated from

These calculations are done through arrays indexed by

1. alewife young
2. alewife adults
3. small chubs
4. large chubs
5. sculpin
6. whitefish
7. lake trout

Return to each type of gear is calculated as the the sum of price times catch over all species less the cost of the fishing effort. General increase or decrease in fishing cost then follows:

The change in effort for any particular gear type is then made proportional to net return to that particular gear type. If return is negative this reduces effort and if it is positive it produces an increase. The sum of these changes is equal to the net general investment.

Variables used in the fishery submodel are listed in Table 4.
Lamprey Submodel
The lamprey submodel determines attack rates and mortalities of various prey species given the abundance of prey and adult lamprey. Control measures are assumed to yield a constant number of transformers each year. The basic predation model used for this submodel was the multiple-species disk equation after Holling:

$$
\mathrm{LA}(\mathrm{i})=\mathrm{LC}(\mathrm{i}) * \mathrm{~L} /\left[1+\sum_{\mathrm{j}=1}^{6} \mathrm{LC}(\mathrm{j}) * \mathrm{Ml} * \operatorname{LF}(2, \mathrm{~J}) * \operatorname{LF}(1, \mathrm{~J}) 1\right.
$$

where $L A(i)$ is the attack rate per year per individual of species i, L is the adult lamprex abundance, $\mathrm{M} 1 * \operatorname{LF}(2, \mathrm{~J})$ is the handling time per attack, with Ml assumed to be 3.8×10 $\mathrm{yrs} / \mathrm{mm}$ and $\operatorname{LF}(2, \mathrm{~J})$ average individual length of prey species $\mathrm{j} . \operatorname{LF}(1, \mathrm{~J})$ is the abundance of prey species j, and LC(i) is the effective search rate of lamprey for species i (or j) Effective search rate is a function of prey size:

$$
\operatorname{LC}(\mathrm{i})=\mathrm{K} * \operatorname{LF}(2, \mathrm{i}) * \operatorname{LR}(\mathrm{i}),
$$

where K is a scaling constant representing the fraction of the lake volume searched by an individual lamprey adult per year and $\operatorname{LR}(i)$ is a species preference index.

The instantaneous mortality due to lamprey attack is a probabilistic function:

$$
\operatorname{LC}(\mathrm{i})=(1-\mathrm{J} 1) * \mathrm{LZ} * \mathrm{LA}(\mathrm{i}),
$$

Table 4. Fishery Submodel Variables

Variable	Description
EA	Discounted value of net benefits from year 6 to T1 in dollars (U.S.)
EC	Regional economic multiplier for commercial landed value
EL	Regulated upper limit of fishing effort indexed over gear types
EM	Minimum effort allowed by gear fype - used for test fishing
EP	Dockside prices for commercial fish indexed over species
ER	Net contribution to the regional economy in U.S. dollars
ES	Regional economic multiplier for angler-days
FD	Management costs in millions of U.S. dollars
FE	Fishing effort indexed over gear types
FI	Net total contribution to regional economy
FL	Total commercial landed value
FR	Net return by gear types in dollars
FT	Cost of fishing by gear type in dollars
FZ	Cost of assesment work
GA	Scales population-distance from fishery distribution to size of regional
	population
GB	Inverse of mean cost/angler day for population of fishermen
GC	Management cost multiplier of commercial landed value
GF	Cost of fishing by gear type in dollars per effort unit
GG	Rate of decay of angling effort with increasing costs per angling day
GH	Total harvest of each species by all commercial gear types indexed by
GI	species
Commercial fishing depreciation rate	
GK	Square of catch rate at which angling effort is one-half of its saturation
	level
GS	Management cost multiplier of sport fishing effort
Gb	Maximum price paid for fish in short supply indexed by species
G1	Harvest per year at which price is halfway between Gb and G2 indexed
G2	by species
G6	Minimum price paid for fish during glut supply indexed by species
G6	General rate of return on investment in the economy
LD	Administrative overhead management cost in millions of dollars

where LZ is the fraction of a year in which lamprey are actively feeding (assumed to be 0.33 in these analyses), and J1 is the probability of survival. This probability is a function of the ratio of prey to lamprey size:

$$
\begin{gathered}
\text { if } \mathrm{LF}(2, \mathrm{i}) / \mathrm{M} 3 \geq \mathrm{M} 5 \\
\mathrm{~J} 1=1 \\
\text { if } \mathrm{LF}(2, \mathrm{i}) / \mathrm{M} 3<\mathrm{M} 5 \\
\mathrm{~J} 1=\mathrm{M} 4 * \mathrm{LF}(2, \mathrm{i}) / \mathrm{M} 3
\end{gathered}
$$

where $_{-1}$ M5 is a threshold ratio of prey/lamprey size (. 292 in the model) and M4 is 3.8×10. $5 \mathrm{~mm}^{-1}$.

Variables used in the lamprey submodel are listed in Table 5.
Lamprey prey categories included in the model and their preferences were

Index	Prey	
	Category	LR(i)
$\mathbf{1}$	Lake Trout	1.0
$\mathbf{2}$	Whitefish	0.2
$\mathbf{3}$	Age 2 Coho	0.4
$\mathbf{4}$	Age 2 Chinook	0.4
$\mathbf{5}$	Age 3 Chinook	0.4
$\mathbf{6}$	Adult Cisco	0.05

Lake Trout Submodel

The lake trout submodel is an age-structured model that describes growth as well as abundance changes. The model provides for 10 age classes:

$$
\begin{gathered}
\mathrm{TA}(\mathrm{i}, \mathrm{t}+\mathrm{l})=\mathrm{TA}(\mathrm{i}-1, \mathrm{t}) * \exp [-\mathrm{Z}(\mathrm{i}-1, \mathrm{t}) \mathrm{I}, \mathrm{i}=2 \text { to } 9 \\
\mathrm{TA}(10, \mathrm{t}+\mathrm{l})=\mathrm{TA}(9, \mathrm{t}) * \exp [-\mathrm{Z}(9, \mathrm{t}) 1+\mathrm{TA}(10, \mathrm{t}) * \exp [-\mathrm{Z}(\mathbf{1 0 , t})]
\end{gathered}
$$

where TA($\mathrm{i}, \mathrm{t})$ is the abundance of age group i at time t and $\mathrm{Z}(\mathrm{i}, \mathrm{t})$ is the instantaneous total mortality of age group i at time t. Recruitment as yearlings is a function of fecundity and survival of the first year of life:

$$
\mathrm{TY}=\sum_{\mathrm{i}=1}^{10} \mathrm{TM}(\mathrm{i})^{*} \mathrm{TA}(\mathrm{i}, \mathrm{t})^{*}(\mathrm{U} 5 * \mathrm{TW}(\mathrm{i})-\mathrm{UG})^{*}(\mathrm{UR}(\mathrm{i})+\mathrm{UP} *(\mathrm{l}-\mathrm{UR}(\mathrm{i}))
$$

where TY is the number of eggs deposited, TW(i) is the average weight of a fish of age i in year $t, 1-U R(i)$ is the fraction of age i fish that were stocked, UP is the fraction of stocked fish that reproduce, U5 and U6 are fecundity coefficients (estimated to be $1.779 \mathrm{eggs} / \mathrm{g}$ and 0.5496 eggs, respectively). The fraction of mature females in an age group, TM(i), was also a function of body size:

$$
\mathrm{TM}(\mathrm{i})=\mathrm{U} 3 * \mathrm{TW}(\mathrm{i})-\mathrm{U} 4
$$

Table 5. Lamprey Identification

Variable	Identification
J	Index
J5	Survival Probability
K	Proportion of lake volume searched annually
KK	Summation term
LA(i), $\mathrm{i}=1,6$	Lamprey attack rate
LC(i),i=1,6	Effective Search Rate/and Instananeous mortality coefficient
LF(1,1) $\mathrm{i}=1,6$	Abundance of each prey category
$\operatorname{LF}(2,1) \mathrm{i}=1,6$	Average length of prey in each category
LP	Instantaneous mortality of adult ciscos
LR(i), $\mathrm{i}=1,6$	Probability of attack for each prey category
LT	Instantaneous mortality of lake trout
LW	Instantaneous mortality of whitefish
LX	Summation term
LY	Summation term
LZ	Proportion of year for active lamprey feeding ${ }_{\text {-5 }}$
M1	Slope of handling time vs. size of prey $3.8 \times 15^{-5} \mathrm{yrs} / \mathrm{mm}$
M2	Probability of attack within reactive distance 1.0 unitless
M3	Survival ratio threshold for prey/lamprey 356 unitless
M4	Survival slope coefficient for small prey . 292 unitless
M5	Threshold size ratio for prey survival 3.42 unitless

where U3 and U4 are maturity coefficients $\left(0.00054 \mathrm{~g}^{-1}\right.$ and 0.80428 respectively). If TM(i) was less than zero then the age group contributed no mature females. Total yearlings in the next year were the sum of stocked yearlings and the survival (assumed to be 0.001) of the deposited eggs.

The instantaneous mortality coefficient for each age group was dependent upon an assumed natural mortality of 0.26 yr , mortality due to lamprey attack, and fishing mortality. Fishing mortality was computed over six different fishery/gear types. Associated with each fishery type was a catchability coefficient and a "knife-edge" vulnerability dependent upon body size (i.e. if a fish is greater than a certain size then it is fully vulnerable to the fishery and not vulnerable if it is less than or equal to the cutoff size). Catchability coefficients and knife-edge vulnerability weights for each fishery were

Fishery	Critical Body Wt. (g)	Catchability Coefficient Value	Units
Angling	1000	0.0001	10^{3} angler day
Trawling	1000	0	hrs
Small mesh chub gill nets	500	0 -5	km
Large mesh trout gill nets	1500	1.65×10^{-5}	km
Large mesh whitefish gill nets	1500	3.3×10^{-5}	100 km
Trapnets	1000	1.26×10^{-5}	100 lifts

Effort for each gear type is provided by the Fishery/Economic submodel. Harvest by gear type is computed from the ratio of fishing mortality by gear to total mortality:

$$
T 6(j)=\sum_{i=}^{10}(T 9(j) / T Z) *(1-\exp (-T Z(i))) * T A(i, t) * T W(i) / U 1
$$

where T6(i) is the biomass caught in gear $\mathrm{j}, \mathrm{T} 9(\mathrm{j})$ is the fishing mortality of age group i in gear j , TZ(i) is the total instantaneous mortality of age i , U1 is a conversion of grams to metric tons. All other variables are defined above.

Growth rate of lake trout in the submodel is determined by the average weight change of each age group:

$$
\mathrm{TW}(\mathrm{i}, \mathrm{t}+1)=\mathrm{TW}(\mathrm{i}, \mathrm{t})+\mathrm{TX}(\mathrm{i}) * \mathrm{TT},
$$

where $\operatorname{TW}(i, t)$ is the mean weight of fish in age group i at time t, TX(i) is the maximum weight increment for the age group at maximum consumption, and TT is the proportion of maximum consumption for year t. This proportion depends upon prey abundance as follows:

$$
T T=\left(\sum_{j=1}^{5} P(j) * T 1(j)\right)^{\prime}\left(T D+\sum_{j} P(j) * T 1(j)\right)
$$

where TD (assumed to be $50,000 \mathrm{MT}$ in these simulations) is the prey biomass at which consumption is $\frac{1}{2}$ of the maximum rate, $\mathrm{P}(\mathrm{j})$ is the abundance of prey species j , and $\mathrm{Tl}(\mathrm{j})$ is a preference index for each prey species (all assumed to have a value of 1.0). Instantaneous mortality rate of each prey due to lake trout predation is thus:

$$
\mathrm{TV}(\mathrm{j})=\mathrm{T} 1(\mathrm{j}) * \mathrm{TS} * \mathrm{~TB} /\left[\mathrm{TD}+\sum_{\mathrm{j}} \mathrm{P}(\mathrm{j}) * \mathrm{~T} 1(\mathrm{j})\right],
$$

where TB is total lake trout biomass.
Variables used in the lake trout submodel are listed in Table 6.
Whitefish - Salmon Submodel
Whitefish

State Variables

WN	\# Age classes considered
WA	\# in each age class, 1 WN
WL	Total length mm by age class
WB	Weight kg by age class
WH	Harvest MT for 7 forms of fishing effort
WB	Biomass kg of fish age 1 and older
A	Area of Lake Michigan km^{2}
V	Volume of Lake Michigan km^{3}

Functional Relationship
Natural Mortality rate age 1 or older
This rate was determined by a linear function of population biomass:

$$
\begin{aligned}
& \mathrm{WW}=\mathrm{X} 3+\mathrm{X} 4 * \mathrm{WB}, \text { where } \\
& \mathrm{X} 3=0.4, \mathrm{X} 4=1 \mathrm{E}-3 / \mathrm{A}
\end{aligned}
$$

Mark Ebener had a summary of estimates from his thesis on Green Bay Whitefish and the, literature.

Extreme values of 0.4 and 0.67 for exploited and unexploited populations respectively, were used from Healey's work. A value of 0.4 was set as the minimum and 0.67 was set as the value for an estimated unexploited biomass in Lake Michigan of 236 $\mathrm{kg} / \mathrm{km}$.

In the discussions, some consideration was given to the idea that immatures, males and females might have different mortality rates. There was limited discussion of the possibility that the rate might increase with age. For the scenarios run on October 6, 1981, X4 was arbitrarily set to zero.

Table 6. Lake Trout Variables .

Variable	Identification
	Number of mature females
TA(i);i-1 to 10	Total number of trout in each age class
TB	Total lake trout biomass (MT)
TC	Summation term
TD	Biomass of prey at half maximum feeding rate (MT)
TF	Number of stocked yearlings
TG	Growth weight increment (g)
TH(j);j=1,6	Total lake trout harvest in each gear (MT)
TK	Amount of each prey type eaten (MT)
TL(i);i=1,10	Catchability coefficient of 6 gears
TS	Maximum consumption rate
TT	Consumption summation term
TU(k), $\mathrm{k}=1,5$	Mortality rate of each prey type
TV(j); $\mathrm{j}=1,6$	Knife-edge vulnerable weight for each gear type (gms)
TW(i); $\mathbf{i}=1,10$	Average weight (gm) of trout in each age group
TX(i);i=1,10	Maximum weight increment (gm) of trout in each age group
TY	Total yearlings
$\mathrm{T} 1(\mathrm{k})$; $\mathrm{k}=1,5$	Prey preference of trout for each prey type
T2	Counter
T3	Counter
T4	Counter
T5	Total instantaneous fishing mortality
T6(j); ${ }^{\text {j }}$ 1,6	Biomass of trout harvested by each gear
T9(j);j $=1,6$	Instantaneous fishing mortality rate by gear
TB	Survival rate from egg to yearling
UD	Summation term
UH	Total Biomass of Trout harvested
UP	Proportion of stocked Trout that spawn
UR(i);i=1,10	Proportion of naturally recruited fish of age i
U1	Conversion of g to MT
u3	Slope for maturation curve
u4	Intercept for maturation curve
U5	Slope for fecundity curve
U6	Intercept for fecundity curve
u7	Catch per effort of lake trout
U8	Conversion factor for weight to length
VA	Average age of spawning female

Exploitation

Catchability coefficients were estimated on the assumptions:
i) Fishable biomass

3E3 MT
ii) Trapnets caught
iii) Gillnets (large mesh) caught
$0.1 \mathrm{MT} / \mathrm{lift}$
$0.06 \mathrm{MT} / \mathrm{Km}$ set

Therefore, Trapnet $q=3.3 \mathrm{E}-5$ (XE)
Gillnet $\mathrm{q}=2.0 \mathrm{E}-5(\mathrm{Xl})$
These estimates came from Borgeson ($250 \mathrm{lbs} / \mathrm{lift}$ and $40 \mathrm{lbs} / 1000 \mathrm{ft}$). These figures are probably too high for the whole of Lake Michigan, since they are estimates for catches in Green Bay and northern Lake Michigan where whitefish are concentrated.

Size selectivity for the gillnets was available but was not included in the model. Lake trout nets were assumed to be only 0.5 effective (XF). Whitefish are assumed to enter the commercial fishery at length 400 mm (XB) and to be fully recruited at 425 mm (XC).

Lamprey induced mortality is assumed to apply only to fish 400 mm and greater (XB).

Catchability
A Walford equation is used to predict length increments over the summer.

$$
\mathrm{WL}(1)=\mathrm{WL}(1) * \mathrm{WG}+\mathrm{XA}
$$

where XA is the fixed size at age $1,160 \mathrm{~mm}$
WG is a linear function of WB, the population biomass
$\mathrm{WG}=\mathrm{XJ}+\mathrm{XK} * \mathrm{WB}$
where $\mathrm{XJ}=0.83, \mathrm{XK}=-4.2 \mathrm{E}-4 / \mathrm{A}$
Size at age 1 does vary, but there was no certainty as to whether the cause related to yearclass strength or climatic conditions.

Reproduction and YOY Survival
Maturation was set to begin at 400 mm (XB) and be completed at 475 mm (X5). The sex ratio was assumed to be 0.5 and the fecundity was set at $18,000 \mathrm{eggs} / \mathrm{kg}$.

$$
0.5 * 18000=9000=X 6
$$

Eggs over-winter and enter the population as Age 1's a year after that. Survival from egg stage to age 1 was predicted by an exponential function of egg density.
$\mathrm{WA}(1)=\mathrm{WA}(0) * \operatorname{EXP}(\mathrm{X} 8+\mathrm{X} 9 * \mathrm{WA}(0)+0.5 * \mathrm{ZR}$
Age 1 Eggs
where $\mathrm{X} 8=7.26, \mathrm{X} 9=3.75 \mathrm{E}-6 / \mathrm{A}$
ZR is a random normal deviate

Those parameter values were used during initial scenario development on October 6. They produce very high survival values which lend undue resilience to the whitefish population. Collins and Minns have since examined different values of X8 and it is likely it should be set at around -9 . How the strength of the density effect should be maintained is uncertain. The values of key parameters in the whitefish component of the submodel appear in the following table:

Variable name Values
Parameter represented (and units)

X1	$1.48 \mathrm{E}-9$	Length/Weight coefficients
x 2	3.31	mm kg
x3	0.4	Minimal natural mortality rate
x4	1E-3/A	Density effect on natural mort
x5	475	Size mm when fully mature
X6	9000	Eggs/kg mature biomass
X8	-7.26	Minimum mortality rate eggs Age 1
x9	-3.75E-6/A	Density effect of eggs on survival
XA	160	Size mm at age 1
XB	400	Size mm at first entry to Comm. Fishery
xc	425	Size mm at full recruitment to Comm. Fishery
XE	3.33-5	Trapnet catchability
XF	0.5	Proportion lake trout gillnets effective on whitefish
XI	2E- 5	Gillnet catchability
XJ	0.83	Maximum Walford growth rate
XK	4.2E 4/A	Density effect on growth rate

SALMON
State Variables

Functional Relationships

Growth and Feeding
The growth increments in the 2nd and 3rd summers were assumed to be equal for Coho and Chinook, for a given prey biomass. The growth increment was described by a Type II Curve:

$$
\begin{aligned}
& \mathrm{YC}=\mathrm{YD} * \mathrm{YT} /(1+\mathrm{YE} * \mathrm{YT}) \\
& \text { where YD }=3 \mathrm{E}-5: \mathrm{YE}=8,3 \mathrm{E}-6 \\
& \mathrm{YT}=\mathrm{P}(1)+\mathrm{P}(2) \quad \mathrm{MT}
\end{aligned}
$$

Both Coho and Chinook were assumed to feed without preference on the two size categories of alewife. The values for YD and YE represent an empirical fit to a loosely described relationship between growth increments and prey biomass. A food conversion ratio of 5 (Y1) was used to estimate consumption. Salmon were assumed to be planktivores in their first summer. Coho grew to 0.57 kg (YG), Chinook to 0.34 kg (YK).

Natural Mortality and Exploitation

The survival of coho from stocking through to the 2nd spring was 0.25 (YF). The survival of chinook through to the 2 nd spring was 0.15 (YT). Thereafter the natural mortality rate was set at $0.22(\mathrm{YH})$.

The Lamprey mortality rates were received from the lamprey submodel in the array LS.

For exploitation, the catchability was estimated to be $3 \mathrm{E}-4$ per 1000 angler days (YA).

Stocking Costs

Coho cost \quad| $\$ 0.2$ per fish (YL) |
| :--- |
| Chinook cost |$\quad \$ 0.05$ per fish (YM)

Parameter Values

YA	3E-4	Catchability
YD	3E-5)	Growth equation parameters
YE	8.3E-6)	
YF	0.25	Coho survival first year
YG	0.57	Coho weight 2nd Spring kg
YH	0.22	Coho + Chinook natural mortality rate
YI	5.0	Food conversion ratio
YJ	0.15	Chinook survival first year
YK	0.34	Chinook weight 2nd spring kg
YL	\$0.20	Cost per chinook stocked
YU	1 13	Conversion units kg to MT

PREY SUBMODEL

Summary of Equations and Variables for Prey Submodel

Change rules for both the Alewife/Smelt and Cisco/Herring components are based on a Deriso model with partial recruitment. The pre-recruits are considered juvenilles and the recruits are adults:

$$
\begin{align*}
& P(t)=P(t-1) S_{p} V(t) R S_{P} R S\left[P(t-1)-S_{p}(t-2) V(t-2) P(t-2)\right]+H(t) \tag{1}\\
& B(t)=B(t-1) S_{b}+R_{b} S_{b}\left[B(t-1)-S_{b}(t-2) B(t-2)\right]+[1-V(t)] P(t-1) \tag{2}
\end{align*}
$$

where $\mathrm{H}(\mathrm{t})$ is reproduction, S_{D} and S are survival of juveniles and adults respectively, and $(\mathrm{V}(\mathrm{t})$ is the fraction of juveRiles b\&coming adults during year t . The change rule for sculpins, however, is a simple logistic model:

$$
\begin{equation*}
\mathrm{P} 5(\mathrm{t})=\mathrm{p} 5(\mathrm{t}-1)[1+\mathrm{QF}-\mathrm{QF} \mathrm{PS}(\mathrm{t}-1) / \mathrm{QE}] \tag{3}
\end{equation*}
$$

where QF and QE are constants estimated to allow a steady-state sculpin biomass of about 2000 MT.

Alewife/Smelt Component
Non-predatory mortality (i.e. excluding predation by Lake Trout, Salmon, and fishing) is assumed to increase with A/S density. At density less than a critical value, non-predatory mortality is constant, but above this critical threshold, mortality increases at a variable rate, which depends upon a random environmental factor:

Total Alewife Biomass (MT X $\mathbf{1 0}^{\mathbf{- 3}}$)

The random factor has a uniform distribution with a range of 0 to 1 , and it determines one of three possible climatic effects on mortality: better than average ($\mathrm{QR}<.2$), average ($.2 \geq \mathrm{QR} \leq 8)$, and worse than average ($\mathrm{QR}>.8$). The slope of the mortality dependence on A/S biomass increases with worsening climatic effects. Reproduction (PH) in the A/S component is assumed to be a Ricker type function (i.e. $\operatorname{In}(\mathrm{PH} / \mathrm{P} 2)=\mathrm{RL}-\mathrm{R}, * \mathrm{P} 2$) of adult biomass. Initial parameters were estimated from historical observations of alewife in Lake Michigan and were $\mathrm{RL}=1.5$ and $\mathrm{RM}=2.5 \times 15^{-5}$.

Cisco/Herring Component

Unlike the Alewife/Smelt component, the density dependent regulation of the C / H component is through reproduction and growth of juveniles. Growth rate is characterized as a functional relationship between the fraction of juveniles becoming adults ($1-\mathrm{RH}$) and the biomass of juveniles in the same year:

The relationship asserts that for a juvenile biomass less than 10,000 MT about $1 / 3$ of the juveniles become adults and that this fraction decreases linearly to zero at 216000 MT. Reproduction is calculated directly from estimates of fecundity and survival to age 1 . Biomass of yearlings expected from eggs produced by adults (assumed to have a $1: 1$ sex ratio) is

$$
\begin{equation*}
\mathrm{PH}=\mathrm{RU} * \mathrm{P} 4 * \mathrm{RF} / \mathrm{RV} \tag{4}
\end{equation*}
$$

where RU is the number of eggs per adult, RV is the mean weight of an adult, and RF is the mean weight of a yearling at the start of the second year of life. Survival of juveniles during the first year of life was assumed to be a negative exponential function:

$$
\mathrm{PH}=\mathrm{PH} * \mathrm{EXP}[\mathrm{RZ} * \mathrm{P} 4]
$$

where RZ was estimated as $1.7 \times 10^{\mathbf{- 5}} \mathrm{MT}^{\mathbf{- 1}}$. In addition to this functional relationship, mortality of young-of-the-year C / H was assumed to be affected by the total biomass of A / S according to the following:

Mortality of YOY C/H associated with A/S was thus

$$
\begin{equation*}
\mathrm{QX}=\mathrm{RW}+\mathrm{RX}^{*} \quad[\mathrm{PT}-\mathrm{RY}] \tag{6}
\end{equation*}
$$

where RX was 0 for PT RY, and 1.0×10^{-8} for greater values. The maximum value for QX was 1.0. The predicted yearling production was obtained by pooling equation 5 and 6 :

$$
\begin{equation*}
\mathrm{PH}=\mathrm{PH}^{*}[1-\mathrm{QX}] \tag{7}
\end{equation*}
$$

Changes in adult and juvenile biomass were then calculated as in equations 1 and 2.
Variables in the prey submodel are listed in Table 7.

SCENARIO ANALYSES

To illustrate the policy options for management, we established four sets of actions. These actions focussed on Lake Trout rehabilitation and included various combinations of sea lamprey control, trout stocking, and fishery regulation. Simulation 1 is the reference run and the other simulations represent slight modifications of it. Major actions in each of the simulations are summarized in Table 8.

All of the simulations shared some common assumptions. Although these assumptions are identified in the submodel discussions, a few of the most important are: 1) Lamprey have a high preference for Lake Trout over other prey species, 2) all stocked

Table 7. Variables for Prey Submodel	
Code	Identification
P1	Alewife/Smelt Juvenile Biomass
P2	Alewife/Smelt Adult Biomass
P3	Cisco/Herring Juvenile
P4	Cisco/Herring Adult Biomass
P5	Sculpin Biomass
P6	Number of Adult Cisco
R1	Catchability of Adult Alewife by Trawling
R2	Catchability of Adult Cisco by Gillnets
R3	Fishing Mortality of Alewife
R4	Fishing Mortality of Cisco
R5	Baseline Non-pred. Mortality for Alewife
R6	Non-pred. Mortality Coefficient
R7	Non-pred. Mortality Factor for Good years
R8	Non-pred. Mortality Factor for Average years'
R9	Non-pred. Mortality Factor for Bad years
R0	Critical A/S biomass for Non-pred. Mortality
RA	Growth Rate Coefficient for Juvenile Alewife
RB	Growth Rate Coefficient for Adult Alewife
RC	Growth Rate Coefficient for Juvenile Cisco
RD	Growth Rate Coefficient for Adult Cisco
RF	Average Weight of Yearling Cisco
RG	Fraction of Alewife juveniles remaining Juvenile in t
RH	Fraction of Cisco juveniles remaining Juvenile in t
RI	Baseline value of RH
RJ	Coefficient of increase for RH
RK	Critical Cisco Juvenile Biomass for RH
RL	Stock-Recruitment coefficient for Alewife
RM	Stock-Recruitment coefficient for Alewife
RN	Last year's survival rate for juvenile Alewife
RO	Last year's juvenile alewife biomass
RQ	Last year's survival rate for adult Alewife
Last year's adult alewife biomass	
RS	Cisco Non-pred. mortality on juveniles
RT	Cisco Non-pred. mortality on adults
RU	Number of eggs per Cisco Adult
RV	Mean Weight of Adult Cisco
RW	Baseline Mortality Rate for YOY Cisco
RX	Coefficient of Increase for QX
E	Critical Alewife Biomass for QX
Cisco Density Dependent Parameter for YOY survival	
QA	Last year's survival rate for juvenile Cisco
QB	Last year's juvenile Cisco Biomass

QC	Last year's survival rate for adult Cisco
QD	Last year's adult Cisco Biomass
QE	Sculpin Carrying Capacity
QF	Sculpin growth rate
QG	Non-predatory mortality of sculpins
QH	Natural Mortality of Adult Alewife
QI	Total Mortality of Adult Alewife
	Juvenile Cisco Natural Mortality
QK	Total Adult Cisco Natural Mortality
QL	Total Sculpin Mortality
QM	Juvenile Alewife Survival
QN	Adult Alewife Survival
QO	Juvenile Cisco Survival
QP	Adult Cisco Survival
QR	Sculpin Survival
QS	Temporary Variable
QT	Temporary Variable
QU	Die-off of Alewife due to non-predatory mortality
QV	Upper boundary of good years for Alewife Mortality
QW	Lower boundary of bad years for Alewife Mortality
QX	Temporary variable in computing Alewife Mortality

Note: Variables without values change during simulation.

Table 8. Summary of Differences in Simulations

	Lake Trout Stocking	Sea Lamprey Abundance	Fishery Regulation
1	3×10^{6}	50,000	Unregulated effort
2	3×10^{6} to year 14,	50,000	Unregulated effort
3	0 year 15 on		
4	3×10^{6}	50,000 tyear 14 500,000 year 15 on	Unregulated effort
4	3×10^{6}	50,000	Commercial fishery effort restrictions

Lake Trout that survive to reproductive maturity spawn, 3) the species mix and lake characteristics were matched to Lake Michigan, and 4) 9 million salmon are stocked every year. Lamprey control in these scenarios was assumed to affect the abundance of parasitic phase animals, and the level of control would result in a constant abundance of lamprey. Finally, the graphical summaries of the scenarios do not show the pattern of the first 5 years of the simulation. This procedure was adopted to minimize the distraction of the initial condition transients in the model.

Simulation 1 represents a lake trout rehabilitation policy Similar to the Lake Michigan program. No natural Lake Trout existed in the lake prior to the start of the simulation, and lamprey control was assumed to be in place and result in a constant abundance of 50,000 parasitic lamprey each year. Fisheries, however, were not regulated. Under these conditions, Lake Trout biomass increased slowly. Natural reproduction accounted for about half of the yearlings after 35 years (Fig. 3). Lamprey attacks were low throughout the simulation (Fig. 4), and harvests of all species were low (Fig. 5). Finally, management costs remained near $\$ 10$ million annually with return to the regional economy at about $\$ 140$ million annually (Fig. 6). Rarely during this run was there a net positive return to the commercial fishery (Fig. 6).

Commercial fishery
$\left(10^{6} \$\right)$

In simulation 2, trout stocking was terminated at year 15. The rehabilitation of Lake Trout fared less well (Fig. 7), and natural reproduction alone could not maintain the population. Lamprey attack rates were not much different, but harvests of whitefish increased (Fig. 8). Halting stocking in year 15 reduced management Costs slightly, but led to lower contributions to the regional economy (Fig. 9).

The model seemed to be much more sensitive to lamprey abundance changes. For simulation 3, we assumed that lamprey control efforts were reduced in year 15 and that the abundance of parasitic lamprey increased to 500,000 . The result of this policy change was a collapse of the Lake Trout population (Fig. 10). Only stocking maintained any lake trout with the proportion of natural yearlings declining toward zero. Lamprey attack rates increased dramatically and remained at a high level (Fig. 11). Harvests of all species deteriorated (Fig. 12), and the savings in management costs were accompanied by a severe reduction in the contribution to the regional economy (Fig. 13).

The final scenario represents the best conditions for rehabilitation. In addition to lamprey control and a stocking program, effort restrictions are placed on the commercial fishery. The recovery of Lake Trout is much more rapid with about 80% natural yearling productivity by year 35 (Fig. 14). Lamprey attack rates are quite low, and the harvests improve greatly (Fig. 15). By year 35, the contribution to the regional economy increases to nearly $\$ 160$ million annually, and the commercial fishery shows a substantial net profit increase (Fig. 16).

APPENDIX A
 User's Guide to SALMONID/LAMPREY DEMO

The simulation model developed at the Sault Ste. Marie Workshop is written in Applesoft BASIC and stored on $5 \frac{1}{4}$ " floppy disks written under Disk Operating System (DOS) 3.3. A complete listing of the program appears in Appendix F. The following instructions will enable the user to load and execute the simulation model and to recall several scenarios developed at the workshop. Appendix B provides a brief set of instructions for modification of the program to allow variations from the four currently available scenarios. Appendix C contains instructions and program listings for capturing the results of several simulations for subsequent demostration of multiple scenarios.

Running the program and recreating these scenarios requires a disk containing at least the following programs:
A 002 HELLO
T 002 BLS
T 002 TSS
T 002 LCS
T 002 RFS
*A 042 SSM DEMO

* 003 ZM VALUES
simple greeting program
files that set initial parameter values for the various scenarios

SALMONID/LAMPREY simulation model
file to "standardize" the output scaling to simplify comparisons between scenarios

In the output below, the USERS responses are underlined whereas the prompts and error messages generated by the computer are in normal upper case characters.

To start the simulation model with an Apple that is turned off, execute the following sequence of steps:

1) Insert SSM DEMO disk into disk drive and turn Apple's main power switch ON; (this is a COLD START)
2) 1 LOAD SSM DEMO
3)] RUN
4) FILE NOT FOUND Do not worry that the Apple chirps at you!
5) BREAK IN 11
6) JLOAD SSM DEMO

Be persistent!
7) JरUN
8) ENTER COMMANDS, THEN CONT
9) $]$ CONT
10) SMM FROM 035

You may simulate over a period from zero to 35 (years), or a lesser period beginning from zero (but not less than 10)
11) You will now have to wait approximately 10 minutes while the Apple computes the simulation results. While you are waiting, rest assured that the error messages (4 and 5 above) will not appear if the Apple you are using has not
been turned OFF since the last time it ran a MICRO SIMCON simulation program (this is the apparent different between a COLD START and a WARM START). A WARM START would be as above without lines 4-7.
12) When the simulation is complete, a rectangular box will be drawn on the screen and the computer will request input from the user with the prompt:

PLOT VAR\#

The user may respond with any of the following:
a) $\underline{n} \quad$ where n is the number from 1 to 20 corresponding to an indicator variable generated by the simulation model (see Table 3 in this report). For example, if the user types a $\underline{4}$ followed by a carriage return (required to terminate any input line), the computer will plot the total lake trout biomass (in metric tons) that has been calculated for the period of the simulation. Only the last 30 years will be shown as the first 5 years of results are not displayed on the screen. As the results are plotted, the maximum value for the Y-axis scaling will appear on a text line at the bottom of the plotting rectangle.
b) $n / 30$ This response will cause indicator variable number n to be plotted on a Y-axis scale of 0 to 30 (obviously not appropriate scaling for variable 4 discussed above). This allows the user to set a particular scaling value in order to compare biomass for two or more species.
c) $n / 1 \mathrm{E} 4 \mathrm{P}$ This will plot a series of points for variable n scaled to a maximum value of ten thousand. The P parameter in this command suppresses the lines that would otherwise connect the points.
d) $\underline{G} \quad$ This clears the screen of any previously plotted results.
e) $\underline{n} b \underline{C I} \quad$ Plots variable n in any of the Apple colors numbered from 1 to 6. The "b" represents a blank, the " C " character is required and the " I " is a numeric character from 1 to 6 . Note that a command of $9 \underline{b} \mathbb{C} 4$ will appear to erase variable 9 from the screen if this variable has previously been plotted in a color other than 4 . This is because color 4 is BLACK.
!!! Be very careful in using the following four commands!!!
f) \underline{s} filename Will cause the computer to store the current image of the graphics screen in a file by the name specified in the "filename" argument. This file will be written onto the disk currently residing in the disk drive.
g) \underline{R} filename This will ERASE THE CURRENT SCREEN IMAGE and replace it with an image previously stored by an $\underline{\underline{S}}$ filename command.
h) (carriage The "return" key will send you back to step 8 above. That is, return) the computer will prepare for another simulation run. This means that you will have to wait another ten minutes or so to look at some new simulation results.
i) (Control C) This command will interrupt the computer from whatever it is doing. You may now type TEXT to eliminate the plotting rectangle and you can make whatever changes you wish in the basic structure of the simulation model or, perhaps you could change some of the initial values of the variables. To examine the current value of any of the variables in the model type PRINT nn where nn is the name of a variable in the model. For example, PRINT LT will display the current value for the instantaneous lake trout mortality coefficient.

Return to step 7 to re-run the model.

APPENDIX B

Scenario Generation

The SALMONID/LAMPREY DEMO disk is loaded with four demonstration scenarios that provide differing sets of initial conditions for contrasting a few management options. The table below identifies the basic differences between these scenarios and identifies them by name.

Initially, the model specifies that there is a very small native lake trout population and that stocking programs began at some previous time with 3 million trout per year, 6 million chinook, and 3 million coho. Lamprey control is at a fairly high level with a maximum of 50,000 parasitic lampreys in the lake. The model also assumes that hatchery trout will reproduce on a schedule similar to native trout and that the commercial fishery is essentially unregulated, i.e. responding only to fish availability and markets.

Alternate
Scenario
Conditions Modelled
LCS
Cessation of lamprey control after 15 years (other conditions as specified above)
TSS
Cessation of lake trout stocking after 15 years
RFS Unregulated sport fishery but effort controls applied to the commercial fishery.
BLS This scenario restores the initial conditions discussed above.

To run a particular scenario, execute the steps 1-12 specified in Appendix A. When you have examined the results of the initial scenario to your own satisfaction, execute a CONTROL C (step 12i of Appendix A). Now choose the name of the alternate scenario you wish to examine, for example, LCS, and execute the following command:

E X E C b L C S (Carriage Return)

A short series of square left brackets will appear vertically on the screen. Now, type RUN as in step 7 of Appendix A. In approximately 10 minutes you can examine the results of the LCS scenario.

One other useful file named ZM VALUES exists on the demonstration disk. This file allows the user to specify a constant set of maximum sealing values for the Y -axis so that comparisons between scenarios can be drawn without confounding by differing output scales. To prepare a simulation run using these fixed maximum scaling values, execute:

EXEC ZM VALUES prior to RUNning the model.

Each of the scenario files and the scaling file cause changes in the simulation program. To reinitialize the model to its original condition after running an alternate scenario, simply LOAD SSM DEMO, i.e. return to step 6 of Appendix A.

The contents of the scaling file and the alternative scenario files are listed below so the user can see which variables have been altered in order to generate the various changes in these scenarios.

] EXEC BLS

1 DIM 2(20,35),ZM(20)
$130 \mathrm{EL}(1)=1 \mathrm{E} 6: \mathrm{EL}(2)=20000: \mathrm{EL}(3)=155000: \mathrm{EL}(4)=200000: \mathrm{EL}(5)=100000: \mathrm{EL}(6)=$ 150000
2100 REM
3050 REM
$10090 \mathrm{zs}=\mathrm{zs}+5$
] EXEC TSS
1 DIM Z(20,35),ZM(20)
$130 \mathrm{EL}(1)=1 \mathrm{E} 6: \mathrm{EL}(2)=20000: \mathrm{EL}(3)=155000: \mathrm{EL}(4)=200000: \mathrm{EL}(5)=100000: \mathrm{EL}(6)=$ 150000
2100 REM
3050 IF TI $=15$ THEN TF $=0$
$10090 \mathrm{ZS}=\mathrm{ZS}+5$
1 EXEC LCS
1 DIM 2(20,35),ZM(20)
$130 \mathrm{EL}(1)=1 \mathrm{E} 6: \mathrm{EL}(2)=20000: \mathrm{EL}(3)=155000: \mathrm{EL}(4)=200000: \mathrm{EL}(5)=100000: \mathrm{EL}(6)=$ 150000
2100 IF TI = 15 THEN L = 5E5
3050 REM
10090 ZS $=$ ZS +5
] EXEC RFS
1 DIM 2(20,35),ZM(20)
$130 \mathrm{EL}(1)=1 \mathrm{E} 9: \mathrm{EL}(2)=1000: \mathrm{EL}(3)=15500: \mathrm{EL}(4)=2000: \mathrm{EL}(5)=100: \mathrm{EL}(6)=1500$ 2100 REM
3050 REM
$10090 \mathrm{zs}=\mathrm{ZS}+5$
] EXEC ZM VALUES

$$
\begin{aligned}
& 10102 \mathrm{ZM}(1)+1.5 \mathrm{E} 6: \mathrm{ZM}(2)=4.5 \mathrm{E} 3: \mathrm{ZM}(3)=1: \mathrm{ZM}(4)=3 \mathrm{E} 4: \mathrm{ZM}(5)=12: \mathrm{ZM}(6)=1.6 \mathrm{E} 8: \mathrm{ZM}(7) \\
& =5 \mathrm{E} 3 \\
& 10104 \mathrm{ZM}(8)=4 \mathrm{E} 3: \mathrm{ZM}(9)=1 \mathrm{E} 4: \mathrm{ZM}(10)=1 \mathrm{E} 4: \mathrm{ZM}(11)=5: \mathrm{ZM}(12)=5: \mathrm{ZM}(13)=.25 \mathrm{E} 6: \mathrm{ZM}(14) \\
& =3.5 \mathrm{E} 6: \mathrm{ZM}(15)=2 \mathrm{E} 3: \mathrm{ZM}(16)=2 \mathrm{E} 5: \mathrm{ZM}(17)=25 \mathrm{E} 3: \mathrm{ZM}(18)=30 \mathrm{E} 3: \mathrm{ZM}(19)= \\
& 2 \mathrm{E} 5: \mathrm{ZM}(20)=5 \mathrm{E} 3
\end{aligned}
$$

APPENDIX C

Capturing Multiple Scenarios

The following procedure and the program "OUTPUT SAVER" were developed by C. K. Minns for the purpose of contrasting the outcomes of several different scenarios. OUTPUT SAVER allows capture of scenario results (up to 20 indicator variables per simulation) from individual simulations. Up to 4 of these "saved results" files may be linked together in a single demonstration. To capture new scenarios:

1. RUN SIMCON
2. LOAD SSM DEMO (or whatever simulation model you wish to run)
3. EXEC OUTPUT SAVER
4. Make whatever changes you desire in the initial conditions and/or functional relationships in the model.
5. RUN This executes the new simulation and stores the values of the indicator variables if you respond as in step 6 below.
6. PLOT VAR \# -- DS This saves SCENARIO results to the disk under the filename specified in step 7.
7. ENTER FILE NAME -- RESULTS1 (or whatever you want to name the file).

To display results of up to 4 different simulations:
(from a cold start)

1) RUN SIMCON
2) RUN SIMDEMO
3) ENTER COMMANDS, THEN CONT
4) CONT
5) SIM FROM -- GR This response opens the graphics window on the screen.
6) PLOT VAR \# -- DL This loads the first 20 indicators into variable locations 1 through 20.
7) ENTER FILE NAME -- RESULTS1 This specifies the filename containing the previously saved results of a simulation.

Repeat steps 6 and 7 no more than 3 additional times.
8) PLOT VAR\# -- N This response allows you to display the NAMES of the first 20 indicator variables (rather than their numbers).
9) ENTER NAMESFILE NAME -- SSM NAMES These are the variable names assigned to indicator variables 1-20 for the Sault Ste. Marie model.
10) PLOT VAR\# -- 4 This will cause the lake trout biomass to be plotted on the screen with a variable name (LAKE TROUT BIOMASS) in the text window below the graphics screen. If you have saved the results of 4 simulation runs and wish to see the lake trout biomass plotted for each one, simply answer the prompt in step 10 in the following order: $64,44,24,4$. Note that any order which does not end with variable number 4 will not display the NAMESFILE label.

Acknowledgements and Disclaimer

It is impossible to properly acknowledge the efforts of all those who have contributed to the synthesis of information reflected in this adaptive management workshop. Most of whatever credit is due belongs to the earlier legions of managers and researchers who have pondered Great Lakes fishery management over the past century. The small group of contemporary practitioners who assembled the collection of rules manifest in this simple simulation model must carry the burden for inaccuracies of fact and misinterpretations inevitably buried within this model. We harbour no illusions that this is a "correct" reflection of reality. But, we can attest to the fact that the ideas examined during construction of this model have stimulated many of the participants to identify key uncertainties in their own understanding of Great Lakes salmonid management. We hope that the rigour of this experience has been as refreshing and rewarding to the other participants as it has been to us.

APPENDIX E

Names, Addresses, and Affiliations of Participants in the Sault Ste. Marie Workshop

Bureau of Indian Affairs

Thomas R. Busiahn
Fisheries Biologist
Red Cliff Tribal Office
P.O. Box 529

Bayfield, WI 54814
(715) 779-5162

Mark Ebener
Sault Ste. Marie Tribe of Chippewa Indians
206 Greenough Street
Sault Ste. Marie, MI 49783
Case Western Reserve University
Joseph F. Koonce
Department of Biology
Case Western Reserve University
Cleveland, OH 44106
(216) 368-3561

Cornell University
Doug Heimbuch
Department of Natural Resources
Cornell University
Ithaca, NY 14853
(607) 273-2528

William Youngs
Department of Natural Resources
Cornell University
Fernow Hall
Ithaca, NY 14853
(607) 256-5470

Department of Fisheries and Oceans
Herb Johnson
Sea Lamprey Control Centre
Department of Fisheries and Oceans
Huron Street, Ship Canal P.O.
Sault Ste. Marie, Ontario, Canada P6A 1P0
(705) 949-1102
C. K. Minns

Great Lakes Biolimnology Lab
Canada Centre for Inland Waters
P.O. Box 5050

Burlington, Ontario, Canada L7R 4A6
(416) 637-4730

James Tibbles
Sea Lamprey Control Centre
Department of Fisheries and Oceans
Huron Street, Ship Canal P.O.
Sault Ste. Marie, Ontario, Canada P6A 1P0
(705) 949-1102 / 253-7974

ESSA Ltd.

Bob Everitt
678 W. Broadway
Vancouver, B.C. U5Z 166
(604) 872-0691

Michael Jones
165 Parkside Drive, \#2
Toronto, Ontario, Canada M6R 2Y8
(416) 533-2785

Pete McNamee
678 W. Broadway
Vancouver, B.C. U5Z 166
(604) 872-0691

Mike Staley
678 W. Broadway
Vancouver, B.C. U5Z 166
(604) 872-0691

Great Lakes Fishery Commission
Randy Eshenroder
Great Lakes Fishery Commission
1451 Green Road
Ann Arbor, MI 48105
(313) 662-3209
Kenneth Loftus
Provincial Fisheries Scientist
Ontario Ministry of Natural Resources
Room 2342
Whitney Block, Queen's Park
Toronto, Ontario, Canada M7A 1W3
(416) 965-5661
Michigan Depart men t
of Natural Resources
Dave Borgeson
Fisheries Division
Michigan Department of Natural Resources
P.O. Box 30028
Lansing, MI 48909
(517) 373-1280
Doug Jester
Fisheries Division
Michigan Department of Natural Resources
Box 30028
Lansing, MI 48909
(517) 373-1280
Asa Wright, Chief
Great Lakes Fisheries Section
of Fisheries Division
Michigan Department of Natural Resources
Box 30028
Lansing, MI 48909
(517) 373-1280

Michigan State University

Becky Johnson
Dept. of Agricultural Economics
Michigan State University
E. Lansing, MI 48824
(517) 353-7898

Scott Jordan
Michigan State University .
E. Lansing, MI 48824
(517) 355-4477

Dan Talhelm
Michigan State University
E. Lansing, MI 48824
(517) 355-7493

Minnesota Department of Natural Resources
John R. Spurrier
Minnesota Department of Natural Resources
Department of Fish and Wildlife
10029 Northshore Drive
Duluth, MN 55804
(218) 525-4080

New York State Department of Environmental Conservation

Bill Pearce
New York State Department of Environmental Conservation
P.O. Box 292

Cape Vincent, NY 13618-0292
(315) 654-2147

Cliff Schneider
New York State Department of Environmental Conservation
P.O. Box 292

Cape Vincent, NY 13618-0292
(315) 654-2147

Ontario Ministry of Natural Resources
John Chevalier
Ontario Ministry of Natural Resources 199 Larch
Sudbury, Ontario, Canada P3E 5P9
(705) 675-4135

Jack Christie
Glenora Fisheries Research Station
Ontario Ministry of Natural Resources
Route \#4
Picton, Ontario, Canada K0K 2T0
(613) 476-2400

Ron Christie
Ontario Ministry of Natural Resources 199 Larch Street
Sudbury, Ontario, Canada P3E 5P9
(705) 675-4120

John Collins
Ontario Ministry of Natural Resources
South Bay Fisheries Research Station
R. R. \#1

Tehkummah, Ontario, Canada POP 2C0 (705) 859-3137

Lorne Greig
Fisheries Branch
Ontario Ministry of Natural Resources
Parliment Buildings
Toronto, Ontario, Canada M7A 1W3
(416) 965-7885

Bryan Henderson
Ontario Ministry of Natural Resources
South Bay Fisheries Research Station
R.R. \#1

Tehkummah, Ontario, Canada POP 2C0 (705) 859-3137

Robert Payne
Ontario Ministry of Natural Resources
611 Ninth Avenue, East
Owen Sound, Ontario, Canada N4K 3E4 (519) 376-6531

Mrs. E. Wilkinson
Ontario Ministry of Natural Resources
South Bay Fisheries Research Station
R.R. \#1

Tehkummah, Ontario, Canada POP 2Co (705) 859-3137

University of British Columbia
Carl Walters
Institute of Animal Resource Biology
University of British Columbia
2075 Westbrook Place
Vancouver, B.C. V6T 1W5
(604) 228-6320

University of Minnesota

William K. Easter
Department of Agricultural Economics
University of Minnesota
St. Paul, MN 55108
(612) 376-2929

George R. Spangler
Dept. Entomology, Fisheries and Wildlife
University of Minnesota
132 Hodson Hall
St. Paul MN 55108
(612) 376-2929

University of Wisconsin
Phil Cochran
Limnology Laboratory
University of Wisconsin
Madison, WI 53706
(608) 262-3087

James Kitchell
Limnology Laboratory
University of Wisconsin
Madison, WI 53706
(608) 262-9512
U.S. Fish and Wildlife Service

Ed Brown
U.S. Fish and Wildlife Service

Great Lakes Fishery Laboratory
1451 Green Road
Ann Arbor, MI 48105
(313) 994-3331

Harry Moore
U.S. Fish and Wildlife Service

Sea Lamprey Control
P.O. Box 758

Marquette, MI 49855
(906) 226-3084

Richard Pycha
U.S. Fish and Wildlife Service

1606 St. Clair Street
Ashland, WI 54806
(715) 682-6163
L. Wells (Tex)
U.S. Fish and Wildlife Service

Great Lakes Fishery Laboratory
1451 Green Road
Ann Arbor, MI 48105
(313) 994-3331

Wisconsin Department of Natural Resources
James Addis
Bureau of Fish Management
Wisconsin Department of Natural Resources
P.O. Box 7921

Madison, WI 53707
(608) 266-7025

Ron Poff
Wisconsin Department of Natural Resources
P.O. Box 7921

Madison, WI 53707
(608) 266-2176

Bruce Swanson
Lake Superior Office
Department of Natural Resources
P.O. Box 589

Bayfield, WI 54814
(715) 779-3346

APPENDIX F

Program Listings

```
1 DIM Z (20,35),ZM(20)
2 DIM INA(9),VL (9),WB(9),VS(5),NT(3),TW(3)
3 DIM
TA(10),TN(10),TC(5),TH(5),T5(5),T?(5),T1(5),TJ(5),T9(5),TX(19),TV(5)
4 DIM LA (5),LC(5),LR(5),LE (2,0)
5 DIM P(5),PK}(5,5),PC(5,5
5 DIM EP(7),FE(5),FR(5),GE(5),WM(5),EL(5),G%(7),SL(7),G2(7)
10 FOR I = 1 TO 2\Pi:ZM(I) = M: NEXT :NN = 2\Omega
11 IE PEEK (104) < > G4 THEN PONE 104,O4: POPE 103,1: PONE
15384,0: DRINT CIMS (4);"RIN SIMCON"
12 PRINF "ENTRR COHANMS,TMISN CONT": END
14 INPIN "SIM EROM ";AS: IE LEETS (AS,2) = "OR" THEN 101NO
15 2S = VAL ( LEFTS (AS,2)):NT = VAL (RIGYTS (AS,3))
15 IF NT < I THEN NT = VAL (RIGHTS (AS,2))
18 FOR TIME = 2S TO NT
90 IE TI > O THEN 10OC
91 I1 = I:I2 = 2:I3=3:IA = 4:I5 = 5:If=6:I7 = 7:I8= = :I9 = 9
92 A = 58200:V = 4970:C5 = 1.35
33S(1) = 3EF:S(2) = 5EF:LD = 1F5
94 IG = 0:II = IM:L = 554
110 MA = 15ח9:GB = .92:CG = .a2:GK = 15:FE(1) = 4000
122 EP(1) = 45:EP(2)=45:EP(3)=0:EP(4)=2000:EP(5)=0:EP(6)=
2599:EP(7) = 2300
124 FE(4) = 150n9:FE(5) = 5009:FE(6) = 12000
```



```
125 ER(1)=8:FR(2)=49%:FR(3)=3@0:FR(1)=200:FR(5)=200:FR(6)=
250
127SF(1)=M:GF(2)=4\O:GF(3)=300:GF(A)=200:GF(5)=290:GF(5)=
250:OM(1) = त:\triangleM(2) = 2חल
128 EM(3)=350:EM(4)=200:EM(5)=200:EM(5)=00
130EL(1) = 1EG:EL(2) = 200%G:FL(3) = 1559OQ:EL(4) = 293000:EL(5) =
109090:EL(6) = 1500ח0
15n RPM
291 11 = 3.8E - 5:M2 = 1:M3 = 355:45 = 3.42:N1 = . 292:K = 3.29E - 7
205LR(1)=.1:LR(2)=.2:IR(3)=.4:LR(4)=.4:LR(5)=.4:LR(5)=.05
2%%LZ = . 33:LF (2,5)=280
309 RNM4
301 TV (1) = 1090:TV(2) = 1000:TV(3) = 509:TV (4) = 1500:TV(5) =
15m@:TV(5) = 100%
302 T2 = 1:T3 = 10:T4 = 5
304 TO=.001:TN = . 26:TS = 1.2:TP = 50nत0:TR = 15:5:TF=3E5
305 FOR J = T2 TO T3:TA (J) = 1%: NEXT J
306 TX(1) = 91:TX(2) = 182:TX(3) = M%9:TY(5) = 580:TX(5) = 910:TX(7) =
910:TX(8) = 1370:TX(9) = 1370
307 Tl(1)=1:Tl(2)=1:Tl(3)=1:T1(4)=1:Tl(5)=1:TX(10)=
182п:TX(4) = 489
308 Tn(1) = .T0ก1:T?(2) = \:T\cap(3) = \:T?(4) = 1.65E-5:TO(5) = 3.3E-
5:TO(5)=1.25E - 5
```



```
3:U9=100:UK = . 5495:U0 = 1:UP = 0
```

```
311 UP = 1
312 FOR J = T2 TO T3:UR(J) = T2: NEXT
```



```
1141:TW(7) = 2135
400 WN = 5:TW(8) = 2956:T,Y(9) = 3949:T:9(17) = 5070
```



```
415 DATA
6E5,ก,527,150, 317,269,152,343,93,397,42,429,22,447,11,471,5,475
43n X1 = 1.48E - 9:X2 = 3.31:X3 = ^.4:X4 = !
```



```
432 XB=4ח%:XC=425:XD=1/(XC - XB):XD = 3.35-5:XF=,.5:`T=
5.5S-5:XJ = ?. .83
433 XV = - 4.2F- ! / A:YL = 3.2
455YA=3F-4:YM=3E-5:YF=3.3E-5:VF=9.25:VG=9.57:VH=
0.72:YI = 5:YJ = T. 15:VK = 0.34
455 YM = . .55:VU = 153:YV = 2.39E - O:YN = 3.291:NS(3) = YL *
S(2):NT(3) = YT< + 3
50% IF TI > , %OTO 1MOQ
501 )1 = 1:02 = 2:03 = 3:04 = 4:05 = 5:05 = 5:07 = 7
505 P1 = 2E4:P2 = 2E4:P3 = 153:D4 = 2E4:P5 = 2E 3
507 Rl = 2E - 5:R? = 3.3E - 5
520 R5 = .69:R7 = 7.5F-7:R9 = 1.75 - 5:RO = 5.25F-6:R0 = 1E5
525 RA =.2:RO = . 57:RL = 1.5:RM = 2.5E - 5:RB = .4
543 RN = .3:RO = D1:RP = .3:R2 = P2
551 RC = . 57:RD=.53:RF=1.5E-5:RS = .5:RT = .5
554 RI = . T7:RJ = 1.5E-6:RY = 1R4
55% RU = IFA:RY=.3E - 3:R'% = .999:RX = 1.OE - 9:RY = 1F5:RZ = 1.7E -
5
55M M = .3:OB=P3:X=.3:OD= PA:DG= SA/RV
575 DR=2E3:OF=3:X = . 3
50% % = .0:ny = .?
599 P(1) = P1:P(2) = P2:P(3) = 23:P(4) = P4:P(5)=P5:P(5)=P6
595 AR = RUD (-1)
```



```
55m@:%O(7) = 4ॉmल
61 S1(1)=4955:Gl(2)= 19E5:Cl(3)=1F3:G1(4)=4554
502 %1(5) = 123:.1(6) = 1755:.11(7) = 1.3255:
695 62(1) = 5.5:02(2)=5.5:r?(3) = 0:??(4)=650:02(5)=0:??(6)=
19nm:S2(7) = 10nn
690GS = 750:OC = .15:FZ = 35m@nmm:EA = 1:GD =.95:EC =.0999:ES =
.0003:GT = 0. 22
1000 REM BEGINNING OF SIMULATION
1100 FR(1)=TP(1) + TM/(FR(1) + .1):F|=FR(1)*FR(1):FE(1)=1 +
GA * FW / ((GB + CG) * (G! + EO'))
1200 FOR I = I2 TO IG:ER(I) = O: FOR J = IT TO I4:FR(I)=FR(I) +
PK (J,I) * EP(J) : NEXT J
```



```
NEXT I
1250 OI = - O3:F? = FL - FT: IF FO = OTHBN FO = .01
1255 IF FO > IC 'MEN GI = FN / (NT * ת5)
1390 FOR I = I2 TO IK:EN=FE(I):IEFN={THNN F,N=FM(I)
```

```
1305 FE(I) = FF(I) + SI * F% * (FR(I) - SF(I))*FT/(GF(I) * Fn):IF
FE(I) < EM(I) THEN FE(I) = EM(I)
1310 IFFE(I)>FL(I) THMN FE(I) = FL(I)
1315 NEXT I
2100 REM
2310 LY = O:LV = C
2315 FOR J = I3 TO II:LX = LX + TA(J):LY = TA(J) * TL(J) + LY: `.
:LF(1,I)=LX:LF (2,1)=LY/एX
2325LE L (1,2) = N^(9):LF(2,2)=NL(9):LE (1,5)=?(5)
```



```
NEXT :KK = ?
234\Omega FORJ = II TO IG:LC(J) = ए * LF(2,J) * LR(J):KK = LC(J) * *1 *
LF}(2,J) * LF (1,J) + <R: NEXT
2350 \K = L / (1 + NK)
235% FOR J = II TO IG:LA(J) = LC(J) * KK:J1 = LE (2,J) / M3:J1 = Jl *
M4 * (J1<M5) + (J1 > = M5)
2351 LC (J) = LZ * [A.(J) * (1 - J1): NEXT
2365 LT = LC (1):LUN=LC(2):LD = LC (6)
237@ FOR J = I1 TO I3:J1 = 2 + J:LS(J) = LC(J1): NEXT
260ल Z(11,TI)=[A(I):Z(12,TI)=LA(2)
3950 REM
3149T}=9:TY=\Pi:TB=\Omega:TC=
3150 FOR J = T2 TO T3:TB = TB + ((TA(J)*TN(J))/U1):TM=U3 *
TV(J) - JA
3160 TL(J) = 10* (TN(J)/U9)* . 33
3239 TF TM < T THEN TM = \
32AM IF TM > 1 THEN TMM = 1
325nT=T T TM * TA(T) * UO
3255 TC = TC + TM * TA(J) * J
```



```
* (1 - !RR(J)))
3279 TY = TV + TE
3209 NEXT J
320) 'TY = ((TY * TM))
3202 TR (O) = TY / (TY + TE):TY = TY + TF
330G TJ = 0: FOR J = T2 TO TA:TJ = TJ + (P(J) * T1(J)): NEXT J
333nTT=M:U5=TS*TB/(TJ +TM): FORJ=T2TOTA:TK=P(J)*
Tl(J) * U5:TT = TT + TK
331 TN(J) = WR / P(J):NFNT
3380 FOR M=1 TO G:Th(M)=0:TO(M) = TO(M) * FE(M):NEXT
3390 FOR J = T2 TOT3:TG=TX(J) * (TT/TMS / TS:TW(J) = TN(J) + TS
3450 T5 = 0:TZ = LT: IF J < \triangle THEN TR = त
3460 FORM=1 TO 6:IFTN(J)>TV(M) THENT5 = T5 + T9 (M)
3461 NEXT
3455 IF J < 4 THEN T5 = T5 + T9 (3)
35@0 TZ = T5 +TN +TZ:TS = 1-EXD ( - TZ):TA(J) = TA(J)* (1-TR)
351* U7 = TA(J) * TO * TN(J) / (TZ * U1)
3520 IF J<4 THEN TG(3) = TG(3) + U7 * T9(3)
3525 UHI= त
3539 FORM=1 Th G:IFTM(J)>TV(M) THENT5(M)=T5(M) + U7 *
T9(M):IHH=!H+Th(M)
```

```
3540 NEXT : NEXT
3545 UD = TA(T3) + TA (T3 - 1)
3550 TW(T3) = (TO(T3) * TA (T3) + TN(T3 - 1) * TA (T3 - 1)) / DD
3555 UR(T3) = (TA(T3) * UR(T3) + TA(T3 - 1) * TR(T3 - 1)) / NO
3570 TA(T3) = TA(T3) + TA(T3 - 1)
3575 VA = TC / T
3530 FOR J = T3 - 2 TO T2 STED - 1:TA (J + 1) = TA(J):TN(T + 1) =
```



```
35R1 IR(1) = UR(?)
3520 TVI(1) = 3A:TA(1) = TY:Z(1,TI) = T:Z(2,TI) = IH:Z(3,TT) =
IR(1):Z(4,TI) = TB
365% FOR I = II TO IS:TH(I) = TS(I):TF(I) = TS(I) / (FE(I) + .0@@1):
NEXT I
3^6% Z(13,TT) = TY
4919 NB = 7: FOR I = I1 TO NM:VB(I) = XI * NL(I) ^ X2:WB = WB + NB (I)
* WA(I): NEXT
402g WN = X3 + X4 * VR: FOR I = Il TO I7:NH(I) = M: NEXT I
4025 XG = XE * FE(5):XL = XI * (FF(4) + XF * FE(5))
4930 FOR I = 1 TO W
4940 IE SL(I) < XB THEN 'NY = EXD ( - UN : GOTO 4150
405% IF NL(I) > = XB THEN :N = ('VL(I) - XB) * XD: IF NN > 1 THEN WN
= 1
```



```
4090 NX = WW+LU + SN * XL + NE
4100 :N = EXD ( - NK)
4110 WC = NB(I) * (1-NY) * (NA(I) / NX
412# NH(4) = WH(4) + WC * N * XL:NH(5) = NH(6) + W * 'NE
415n NA(I) = NA(I) * %N
4160 NEXT I
```



```
XL
4170 EOR I = I4 TO IS:NH(I) = NH(I) / YU: NEXT I
A200 NG = XJ + XK * WB: FOR I = II TO NN:NL (I) = NL(I) * WG + XA: NEXT
I
430n NE = T: FOR I = 1 TO N
4319 IF NL(I) < XB THEN :NV = \
4315 IF NL(I) > = XB THEN MV = (%L(I) - VR) / (X5 - XB): IF NN > 1
THEN WN = 1
4320 WE = WE + X5 * AA(I) * MB(I) * :N
4 3 3 0 ~ N E X T ~ I ~
4370WL(WN) = WA(WN) * NL(NO) + NA (WN - 1) * NL(WN - 1)
4380 WA (WN) = WA(OI) + NA(W - I):WL(WN) = WL(WN) / WA(WM)
4385 FOR I = WN - I2 TO Il STEP - Il:NA(I + l) = NA(I):NL(I + l) =
NL(I): VEX'T I
4397 GOSIJ 1290%
4390 VA (1) = NA(0) * EXD (.5 * 2R + YO + Y9 * NA(0)):NA(0) = VE:NL(1)
= XA
4490 :NA(9) = M:NL(9) = M
4A95 FOR I = I3 TO NV: IF ST(I) < XB THEN 4415
```



```
4415 NEXT I
```

```
4420 IF WA(9) > O THEN !L(9) = NT (9) / WA(9)
4450 Z (9,TI) =NH(4) +MH(5) +NH(5):Z(10,TI) = UB / YU
4510 YB = FE(1) * YA:YT = P(1) + P(2):YC = YN*YN/ (1 + YE * YM)
452n WS (1) = YF * S(1):NT(1) = YTG + YC
453M AX = YH + LS (1) + YB:NY = FXP ( - NX):VS (5) = NS (1) * N
4549 NP = NS(1) * (1 - Y % * YR * ?T(1) / ivx
4550 MT = YI * US(1) * VC
4h9@ WX = YH + LS(2) +YB:VY = EXP ( - NX):NS(4) = NS (3) * :N
4h@5 WT(3) = YT(2) + YC
4510 NP = NO + N(3) * YB * NT(3) * (1 - N) / MX
4620 VT = WT + YI * :S (3) * YC
455@ WS (2) = YJ * S(2) :NT(2) = YK + YC
4550 NX = Y1 + LS(2) +YB:NY = EXP (-WX):NS (3) = WS (2) * WY
4670WD = NP + US (2) * (1 - WY) * YB * NT(2) / WK
4580NT = NT + YI * NS (2) * YC
47g0 NP = \P/YN:MK = (WS (5) * NT(1) + WS(4) * MT(3)) / YU
472g AR =S(1) * VL + S(2) * YM:NP(1) =WT / YN / YT:NP(2) = WP(1)
4740 EOR I = I1 TO I3:NU(I) = (VTT(I) / YV) ^ (1 / MW): NEXT
4750 Z(?,TI) = UP:Z(15,TI) = :MK
5000 R3 = R1 * FE (22):R4 = R2 * FE(03)
5155 PT = P1 + P2
5170 RS = 9: IF PT < RO SOTO 5229
5189 RG= RQ:\capR = NN (1)
519@ IE OR < OV THEN RS = R7
5290 IF OR > = N% THEN RS = R9
5220 OH=R5 + RG* (DT - RO):OS = N:OH= NH + TH(1) + WP(1)
525m M = EXP ( - NH)
525% PIt = P2 * EXP (RL - RM * P2):PX = P2:PY = P1
527OOI=OG+N(2) + WP(2) + R3:OT = OI:ON = EXP ( - OI)
52g0 Pl = Pl * M4 * RG + RA * RO * M * (PI - RN * RO) + PY
5295 P2 = P2 * NN + RB * N * (P2 - RP * RO) + (1 - RG) * PY
53NOS = NS * (Ol - M) / N:NT = OT * (Ol -N) / OI
531n DK (O2,O2) = R3 * (O1 - N1) / OI:PC(O2,02) = DX *
PK (O2,O2):PK (O2,O2) = PK (O2,O2) / FP (O2) * P2
5345 OU = OS * PY + NT * PX
5350 RN = M * RG:RO = PY:RP = NN:RO = PX
542\OmegaOJ=RS +TV(O3) + WP(23):OK=RT +TJ(O4) + 听(O4) + R4 + LP
5440 QO = EXP ( - OJ):OP = EXP (-NT)
5450 RH = RI: IF P3<RK GOTO 5490
5460 RH = RI + RJ* (P3 - RK):IF RH > 1 THEN XH=1
5480 QX = RW: IF DT < RY GOTO 55?N
5500 QX = RN + RX * (PT - RY): IF 2X > 1 THEN OX = 1
5520 \capX = (1 - OX) * EXP ( - RZ * P4)
5525 PH = DX * RH * P4 * RE / RV:PX = P4:PV = P3
555חP3 = P3* O * RHI + RC * OO * RU * (D3 - OA * OB) + PH
5555P4 = P4* DP + DD* DP* (PA - X * OD) + (1-RH) * PY
5570 DK (O4,23) = R4 * (1 - ?P) / K
5580 PC (O4,23) = DX * PN(O4,O3):PN(\cap4,O3) = PK (\capA,23) / FE(O3) * P4
5510 A = O * RH:OR = PY: C = OP:OD = PX
5630 PG = P4 / RV
5710OL=M}+\pi=TU(5)+NP(5):OR=EXP (-NL
```

```
5730 PX = P5 * 2R:P5 = PX * (OI + OF * (OE - PX)) / DE
5800 2(16,TI) = P1 + P2:Z(17,TI) = P4:Z(19,TI) = FE(4) +
FE(5):Z(19,TI) = NU:
590\ P(1) = P1:P(2) = P2:P(3) = P3:P(4) = PA:P(5) = P5:P(5) = DG
g\OmegaMO FOR I = I2 TO IA:GH(I) = त: EOR J = I2 TO IN:OH(I) = NH(I) +
PC(T,J): NEXT J: NEXN I:GH(5)= = 
```



```
TM(J): NEXT J
5R25SH(1)=GH(1) + GH(2):GH(2)=GH(1):F! =GH(5):GH(5)=GH(5) + .A
* त!l(7):OH(7) = TH(7) + .1 * Ev
5350 FORI = Il TO I7:EP(I) = (GO(I) * S1(I) +G2(I) * GH(I) * GH(I))
/Gl(I) + त!!(I) * OH(I))
6 9 5 1 ~ N E X T ~ I ~
GQOM FL = 9:FT = ?: FOR I = I2 TO IS: FOR J = I2 TO I4:FL = FL + EP(J)
* DC(J,I)
6991 NFXT J:FL = EL + EO(G) * :M(I) + EP(7) * TH(I):FT = FT + FE(I) *
GF(I): NEXT I
8922 Z (14,TI) = EL - FT
5 3 9 4 ~ I E ~ Z ( 1 4 , T I ) ~ < ~ C ~ T H E N ~ Z ( 1 4 , T I ) ~ = ~ 9 ~
5995 FD = LD + (TF * GT) + OR + Pr (O) + SS * FE(1) + GC * FL + FZ
5OMn }EP=FP+EA*1E-5*(FE(1)*1E3/GG+FL-FD - FT):FA = EA
* (1 - GD)
5991 FI = IS * FL + FE(I) * 1E3/(OG + GB):ER = EC * FL + ES * FE (1)
* 1E3 / (GS + CB)
6950 Z (5,TI) = FD * 1E - 5:Z(5,TT) = FI:7.(7,TT) = FF(1)
70g% Z(20,TI) = ET(5)
12000 ZR = 2 * FOD (15) - 1:ZR = LOG ((1 + ZR) / (1 - ZR)) / 1.82:
RETUNN
```

```
10145 IF LEFNS (AS,I) = "D" TVIDN 1499%
110gn nS = CTRS (4)
14310 INDUT "EMTER FILE NAMR--";BS
14M2% PRINT DS;"OPD ";BS
14030 IF MIDS (AS,2,1) = "L"TMEN 14150
14חAO IF MIOS (AS,2,1)< > "S" THEN 1014%
14759 PRINT OS;"DELRTS ";BS
149GM PRINT NS;"ODEN ";RS
1407% DRINI DS;"RRITE ";DS
14ORO DRINT ZS: PRINT NT: PRINT NV
14990 FOR I = 1 T NV: DRINT 7M(I)
14190 FOR J = 25 TO NT: PRINT Z (I,J)
14110 NEXT J: NEXT I
141つM PRINT DS;"CLOSF ";BS
14130 GOTO 17149
14150 PRINT DS;"READ ";BS
14160 INPUT ZS: INPUT NT: INPUT NV
14179 FOR I = 1 TO NV: INPUT ZM(I)
14180 FOR J = 2S TO NT: INPUT Z (I,J)
1419O NEXT J: NFXT I
142%% COTO 1412?
```

```
29
POPN FEMALE LAKE TROUT
LAKE TROUT HARVEST (MT)
% NATURAL AGEI L.TROUT
LAKE TROUT BIOMASS(<0) (MT)
MANAGEMENT COSTS (SM)
CONTR. REGIONAL INCO:4E ($)
ANGLIIVG EFFORT (IE3 DAYS)
SALMON ANGLING HARVEST (MT)
WHITTEFISH HARVEST (MT)
WHITEFISH BIOMASS (MT)
LAMPREY ATT.RATE LTROUT
[AMPREY ATT.RATE WEISH
* AGE I LAKE TROUT
CO:M.FISH.NET RETURN ($)
SALMON ESCAPEMENT (MT)
TOTAL ALENIFE BIOMASS (MT)
ADULT CISCO BIOMASS (MT)
GILLNET EFFORT (IMM)
NON-PRED ALEEWIFE MORT (MT')
TRAPNET EFFORT (IE2 NIGHTS)
```


SIMNAMES

```
1 DIM \(Z(20,50), 2 M(20), 2 N \$(20)\)
```

```
10146 IF LEFTS (AS,1) \(={ }^{n} \mathrm{~N}^{*}\) THEN 15000
```

10146 IF LEFTS (AS,1) $={ }^{n} \mathrm{~N}^{*}$ THEN 15000
10800 PRINT 2NS(I);"--";2M(I)
15000 D\$ = CHRS (4)
15010 INPUT "ENTER NMMESEILE NNHE--";AS
15020 PRINT DS;"OPEN ";AS
15030 PRINT D$;"READ ";AS
15040 INPUT NV
15050 FOR I = 1 TO NV
1506% INPUT ZN$ (I)
15070 NEXT I
15083 PRINT DS;"CLOSE ";AS
15090 GOTO 19140

```
```

JPR$0
]LOAD CREATE NAMESFILE
jLIST
1000 DIM ZN$ (20):D\$ = CHRS (4)
1010 INPUT "ENTER FILE NAME-";AS
1020 INPUT "NUMBER OF OUTPUT VARS (<=20)? ";NV
1030 IF NV < 1 OR NV > 20 THEN 1020
1040 FOR I = 1 TO NV
1050 PRINT "NAME OF VAR(";I;") ? ";
1060 INPUT "";2N$(I)
1070 NEXT I
1100 PRINT D$;"OPEN ";AS
1110 PRINT D$;"DELETE ";A$
1120 PRINT DS;"OPEN ";A\$
1130 PRINT D$;"WRITE ";A$
1140 PRINT NV
1150 FOR I = 1 TO NV
1160 PRINT ZNS (I)
1170 NEXT I
1180 PRINT DS;"CLOSE ";AS
1190 PRINT "FILE ";AS;" IS WRITTEN"
1200 END
j LOAD SIMDFMO
]LIST
1 DIM Z $(80,35)$, ZM (80) , ZNS (80)
2LZ = \emptyset
10 FOR I = 1 TO 20:ZM(I) = 0: NEXT :NV = 20
11 IF PEEK (104) < > 64 THEN POKE 104,64: POKE 103,1: POKE 16384,0: PRTNT C:RS (4);"RUN
12 PRINT "ENTER COMMANDS,THEN CONT": END
14 INPUT "SIM FROM ";AS: IF LEFTS (AS,2) = "GR" THEN 10100
15 2S = VAL (LEFT\$ (A$,2)):NT = VAL (RIGHTS (AS,3))
16 IF NT < 1 THEN NT = VAL (RIGHT$ (AS,2))
18 FOR TTME = ZS TO NT
10000 FOR J = 1 TO NV
10020 IF Z(J,TI)>ZM(J) THEN ZM(J) = Z(J,TT)
10@40 IF Z(J,TI) < OTHEN Z(J,TI) = g
10060 NEXT
10980 NEXT TIME
10100 HGR
10120 CALL 62450: HCOLOR= 3: HPLOT 0,0 TO 0,159 TO 279,159 TO 279,0 TO 0,0: VIAB 24
10140 INPUT "PLOT VAR"";AS
10145 IF LEFTS\$ (AS,1) = "D" THEN 14000
10146 IF LEFTS (A$.1) = "N" THEN 15000
10150 IF LEFTS (AS,1) = "Q" THEN GOSUB 13000: GOTO 10140
10160 IF LEFT$ (AS,1) < > "S" THEN 10240
10180 AS = RIGHTS (AS, LEN (AS) - 2)
10200 PRINT CHRS (4);"BSAVE ";AS;",A8192,L8192"
10220 GOTO 101A0
10240 IF LEFTS (AS,1) < > "R" THEN 10320
10260 AS = RIGHT\$ (AS, LEN (AS) - 2)
10280 PRINT CHRS (4);"BLOAD ";AS;",.S192"
10300 GOTO 10140
10320 26=0:25=0
19340 REM SEARCH FOR MAX 23ALESS
10360 FOR I = 1 TO LEN (AS)
10380 IF MIDS (AS,I,N) = "/" TIEN 10420
10400 NEXT : GOTO 10600
1042G FOR J = I + 1 TO LEN (NS)
10440 IF MIDS (AS,J,1) = " " THEN 10480
10460 NEXT :J = LDN (AS):AS = AS + ""
10480 23 = VAI, (MID\$ (MS,1 + 1,J - I))

```
```

10500 IF Z6 >0 THHN 10540
10520 75 = 1:24 = 23: coT0 10560
10540 Z5 = 1:XT = 23
10560 AS = LEFTS (AS,I - 1) + RIGHTS (AS, LEN (AS) - J)
10580 GOTO 10350
10500 IF LEN (AS) < 3 THEN 10540
10610 IF MIDS (AS, LEN (AS) - 1,1) < > "C" THEN 10640
10620 ZC = VAL (RIGHTS (AS,1)):A\$ = LEFTS (AS, LEN (AS) - 2)
10630 FOR I = 1 TO LEN (AS): IF RIGHTS (AS.1)< >" " THEN 10640
10635 AS = LEFTS (AS, LEN (AS) - 1): NEXT
10640 2P = 0: IF RIGITTS (AS,1) < > "P" THEN GOTO 10700
10650 2P = 1
10680 AS = LEFTS (AS, LEN (AS) - 1)
10700 IF LEN (AS) > 4 THEN GOTO 11960
10720 I = VAL (LEFTS (AS,2))
10740 IF AS = "G" THEN GOTO 10120
10760 IF AS = "" THEN GOTO 10
10780 IFI < 7 THEN HCOLOR= I: IF I = 4 THEN HCOLOR= 5
10790 IF 2C< > % THEN HCOLOR= 2C:ZC = g
10800 PRINT ZN$(I);"-";ZM(I)
10820 21 = 279/(NT - 2S):Z2 = 1: IF ZM(I) > 0 THEN Z2 = 159/ ZM(I)
10840 IF Z6 > 0 AND Z4 > ZM(I) THEN Z2 = 159/Z4
10860 HPLOT 0.159 - Z(I,ZS) * 22:28= 2S + 1
10900 IF ZP > O THEN GOTO 10980
10920 FOR J = 28 TO NT:Z8 = J - 2S
10940 HPLOT TO 28 * 21,159 - Z(I,J) * Z2: NEXT
10960 GOTO 10140
10980 FOR J = 28 T0 NT
11000 28 = J - ZS
11020 HPLOT 28* 21-1,159-2(I,J) * 22 TO 28* 21,159-2(I,J) * Z2: NEXT
11040 GOTO 10140
11060 HCOLOR= 5:I = VAL (LEFTS (AS,2)):J = VAL (RIGHTS (AS,2)):Z1 = 1:Z2 = 1
11140 IF ZM(J) > 0 THEN Z1 = 279 / ZM (J)
11160 IF Z5 > J AND XT > 2M(J) THEN Zl = 279 / XT
11200 IF ZM(I) > 0 THEN 22 = 159/ ZM(I)
11220 IF 26 > D AND Z4 > ZM(I) THEN Z2 = 159/ 24
11240 HCOLOR= 3
11250 IF ZC < > D THEN HCOLOR= ZC:ZC = 0
11260 HPLOT Z(J,ZS) * 21,159-Z(I,ZS) * 22:Z7= 2S + 1
1130@ IF 2P > Ø THEN GOTO 11380
11329 FOR Z8 = 27 TO NT
11346 HPLOT TO Z(J,28) * 21,159-2(I,28) * Z2: NEXT
11360 GOTO 10149
11380 FOR 28 = 27 TO MT
11490 HPLOT Z(J,Z8) * Z1,159 - Z(I,28) * 22: NEXT
11420 GOTO 10140
11440 END
12000 ZR = 2 * RND (15) - 1:ZR = LOG ((1 + ZR) / (1 - ZR)) / 1.82: RETUINN
13000 D$ = CHR\$ (4):Q\$ = CHRS (17)
13010 INPUT "PLOT TITLE?";T\$
13020 PRINT D$;"PR#1"
13030 PRINT T$: POKE - 12524,0: PRINT QS
13040 PRINT D$;"PR40"
13050 RETURN
14000.DS = CHRS (4)
14010 INSUT "ENTER FILE NAME-";B$
14029 PRINT DS;"OREN ";B\$
14030 IF MIDS (AS,2,1) = "L" TILN 14150
14040 IF MIDS (AS,2,1) < > "S" TIEN 10140
14050 PRINT DS;"DELETE ";B\$
14060 PRINT DS;"OPEM ";B\$
14070 PRINT DS;"WRITE ";3\$
14080 pRINT ZS: PRINT NT: PRINT NV
14090 FOR I = 1 TO IN: PRINT ZM(I)
14100 FOR J = 2S TO NT: PRINT Z (I,J)
14110 NEXT J: NEXT I

```
```

14120 PRINT DS;"CLOSE ";BS
14130 GOTO 10140
14150 PRINT DS;"READ ";BS
14150 INPUT ZS: INPUT NT: INPUT NV
14179 FOR I = 1 TO NV: INPUT ZM(LZ + I)
14180 FOR J = 2S TO NT: INPUT 2(LZ + I,J)
1419g NEXT J: NEXT I
14195 LZ = LZ + 20
14200 GOTO 14120
15090 DS = CHR\$ (4)
15010 INPUT "ENTER NAMESFILE NAME-";AS
15020 PRINT DS;"OREN ";A\$
15030 PRINT D$;"READ ";AS
15040 INPUT NV
15050 FOR I = 1 TO NV
15060 INPUT ZNS (I)
15070 NEXT I
15080 PRINT D$;"CLOSE ";AS
15090 GOTO 10140
600g0 REM CAPTURES PROGRAMS IN SEQUENTIAL FILES
60020 D\$ = CHRS (4)
60030 INPUT "EN'TER FILE NAME--";A\$
50940 PRINT D$;"OPEN ";AS
60050 PRINT DS;"DELETE ";AS
60060 PRINT DS;"OPEN ";A$
60@65 PRINT DS;"WRITE ";A\$
60070 POKE 33,39
60680 LIST 1,59999
60090 PRINT DS;"CLOSE ";A\$
60100 TEXT
60110 END

```
```

